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No evidence GR is broken so why bother? 

Theorists begin to modify Einstein’s 
equations as soon as they’re published. 
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No evidence GR is broken so why bother? 

Collapsing black holes, ultra-high 
energies in the early Universe  
à search for quantum gravity. 



Why Modify Gravity?...  

•  Because we can… 

•  Because there are regimes where GR fails 

•  Because Cosmologists have an 
embarrassing problem. 
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No evidence GR is broken so why bother? 



MG for Cosmic Acceleration 
•  We	  have	  a	  concordance	  cosmology	  which	  explains	  exisDng	  observaDons	  well….	  
•  …	  but	  it	  requires	  that	  ~80%	  of	  all	  maOer	  be	  ‘dark’…	  
•  ….	  And	  that	  ~75%	  of	  the	  enDre	  Universe	  be	  exoDc	  ‘dark	  energy’	  

Arguably	  the	  cosmological	  constant	  is	  an	  elegant	  
convincing	  explanaDon-‐	  sDll	  have	  to	  deal	  with	  the	  size	  
and	  coincidence	  problems….	  And	  Lambda	  is	  boring!	  

Motivations from Observations

• The Universe’s expansion appears to be accelerating.  Does this 
motivate modifying gravity?

- Occam’s razor favors a cosmological constant.  “ Dark energy is the 
cosmological constant until proven otherwise, for the same reason 
that the moon is not made of cheese until proven 
otherwise.” (Bousso 2007)

- Most modifications of gravity do not address the cosmological 
constant problem (exceptions: degravitation, SLEDs)

- Dynamical models can  address conicidence problem
- Weinberg’s (2008) attitude to quintessence models: better to 

compare data to a physically possible model (even if finely tuned) 
than no model at all.
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Motivations from Observations

• The Universe’s expansion appears to be accelerating.  Does this 
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cosmological constant until proven otherwise, for the same reason 
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otherwise.” (Bousso 2007)

- Most modifications of gravity do not address the cosmological 
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- Dynamical models can  address conicidence problem
- Weinberg’s (2008) attitude to quintessence models: better to 

compare data to a physically possible model (even if finely tuned) 
than no model at all.•  In	  2006	  512	  papers	  put	  on	  arxiv	  with	  Dark	  Energy	  in	  their	  abstract,	  	  129	  with	  Modified	  Gravity.	  

•  In	  2012	  591	  papers	  put	  on	  arxiv	  with	  Dark	  Energy	  in	  their	  abstract,	  287	  with	  Modified	  Gravity.	  
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MG for Cosmic Acceleration 
•  There are historical precedents for this DE v. MG dilemma. 

Errors in calculation of 
Uranus’ orbit 

à Le Verrier’s prediction & 
discovery of Neptune,  

a new energy-momentum 
component. 
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MG for Cosmic Acceleration 
•  There are historical precedents for this DE v. MG dilemma. 

Errors in calculation of 
Uranus’ orbit 

à Le Verrier’s prediction & 
discovery of Neptune,  

a new energy-momentum 
component. 

Errors in calculation of 
precession of Mercury’s orbit  
à predictions of Vulcan, a 

new planet. 
Searches were fruitless and it 

required Einstein’s GR, a 
modified gravity theory, to 

explain the observations. 
Donnacha	  Kirk	  
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MG Theories 
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There are very many ways to modify the Einstein equations. 
Two simple examples: 

MG Theories 
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1 Equations
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f(R) Simplest generalisation of the Einstein-Hilbert action 

Can produce late-time acceleration. Sub-class of chameleon/scalar-tensor 
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the linear regime, must evolve to Newtonian-like behaviour on small scales in the nonlinear regime
– otherwise we cannot recover the general relativistic limit in the solar system. This means that the
standard fitting functions in general relativity cannot be applied, and we require the development
of N-body codes in f(R) theories [46].

More general scalar-tensor theories [45], which may also be motivated via low-energy string
theory, have an action of the form

−
∫

d4x
√
−g

[

F (ψ)R +
1

2
gµν∂µψ∂νψ + U(ψ)

]

, (44)

where ψ is the spin-0 field supplementing the spin-2 graviton. In the context of late-time accel-
eration, these models are also known as “extended quintessence”. Scalar-tensor theories contain
two functions, F and U . This additional freedom allows for greater flexibility in meeting the ob-
servational and theoretical constraints. However, the price we pay is additional complexity – and
arbitrariness. The f(R) theories have one arbitrary function, and here there are two, F (ψ) and
U(ψ). There is no preferred choice of these functions from fundamental theory.

Modifications of the Einstein-Hilbert action, which lead to fourth-order field equations, either
struggle to meet the minimum requirements in the simplest cases, or contain more complexity and
arbitrary choices than quintessence models in general relativity. Therefore, none of these models
appears to be a serious competitor to quintessence in general relativity.

B. BRANE-WORLD MODELS

Modifications to general relativity within the framework of quantum gravity are typically ultra-
violet corrections that must arise at high energies in the very early universe or during collapse to a
black hole. The leading candidate for a quantum gravity theory, string theory, is able to remove the
infinities of quantum field theory and unify the fundamental interactions, including gravity. But
there is a price – the theory is only consistent in 9 space dimensions. Branes are extended objects
of higher dimension than strings, and play a fundamental role in the theory, especially D-branes,
on which open strings can end. Roughly speaking, the endpoints of open strings, which describe
the standard model particles like fermions and gauge bosons, are attached to branes, while the
closed strings of the gravitational sector can move freely in the higher-dimensional “bulk” space-
time. Classically, this is realised via the localization of matter and radiation fields on the brane,
with gravity propagating in the bulk (see Fig. 4).
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FIG. 4: The confinement of matter to the brane, while gravity propagates in the bulk (from [47]).
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Gravity ‘leaks’ off brane, weakened at large scales 
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Common problems in MG theories 

•  Ghosts- kinetic term has wrong sign. Field speeds up as it climbs 
potential. 

•  Tachyons- potential not bounded from below, m2 < 0. 

•  Superluminal motions & causality. 

•  Breaches of Lorentz invariance. 

•  Significant fine-tuning to be cosmologically useful. 
 
•  Violation of solar-system constraints à screening mechanisms. 
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•  Eöt-Wash- test WEP in the lab. 
•  Anomalous Tides. 
•  Laser Lunar Ranging- Nordtvedt 

effect. 
•  Time delays- Cassini 
•  Gravitational bending of light. 
•  Precession of perihelion of 

Mercury. 
•  Pulsar Timing. 
•  Binary Pulsars. 

What do we know about Gravity? 
Stringent tests exist on a range of ‘local’ scales. 
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What do we know about Gravity? 

PPN formalism Hajime Sotani

PPN parameters

parameter What it measures relative to GR
γ How much space-curvature produced by unit rest mass ?
β How much “nonlinearity” in the superposition law for gravity ?
ξ Preferred-location effects ?

α

1

,α
2

,α
3

Preferred-frame effects ?
α

3

,ζ
1

,ζ
2

,ζ
3

,ζ
4

Violation of conservation of total momentum ?

- The parameters γ and β are used to describe the “classical” tests of GR, and in some
sence the most important.
- The parameter ξ is non-zero in any theory of gravity that predicts prefereed-location
effects such as a galaxy-induced anisotropy in the local gravitational constant.

- In GR, (γ, β)=(1,1) and the other parameters are zero.
- In scalar-tensor, the only non-zero parameters are γ and β.
- Semi-conservative theories have five free PPN parameters (γ, β, ξ, α

1

, α

2

).
- Fully conservative theories have three PPN parameters (γ, β, ξ).

University of Tübingen 5

PPN formalism Hajime Sotani

Summary of PPN formalism

Matter variables:

- ρ: density of rest mass as measured in a local free falling frame.

- v

i

= dx

i

/dt: coordinate velocity of the matter,

- w

i: coordinate velocity of the PPN coordinate system relative to the mean rest-frame of the universe,

- p: pressure as measured in a local free falling frame momentarily comoving with the matter,

- Π: internal energy per unit rest mass.
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•  Parameterised Post-Newtonian (PPN) formalism studies 
perturbations in the slow motion, weak field limit. 

•  Uses 10 parameters to characterise the coefficients of 
the metric potentials. 
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What do we know about Gravity? 

PPN formalism Hajime Sotani
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Figure 1: Measurements of the coefficient (1 + γ)/2 from light deflection and time delay mesurements.

University of Tübingen 10
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Current limits on the PPN parameters

parameter Effect Limit Remarks
γ − 1 time delay 2.3× 10

−5 Cassini tracking
light deflection 4× 10

−4 VLBI
β − 1 perihelion shift 3× 10

−3

J

2

= 10

−7 from helioseismology
Nordtvedt effect 2.3× 10

−4

η

N

= 4β − γ − 3 assumed
ξ Earth tides 10

−3 gravimeter data
α

1

orbital polarization 10

−4 Lunar laser ranging
2× 10

−4 PSR J2317+1439
α

2

spin precession 4× 10

−7 solar alignment with ecliptic
α

3

pulsar acceleration 4× 10

−20 pulsar ˙

P statistics
η

N

Nordtvedt effect 9× 10

−4 Lunar laser ranging
ζ

1

— 2× 10

−2 conbined PPN bounds
ζ

2

binary acceleration 4× 10

−5

¨

P

p

for PSR 1913+16
ζ

3

Newton’s 3rd law 10

−8 lunar acceleration
ζ

4

— 6× 10

−3

6ζ

4

= 3α

3

+ 2ζ

1

− 3ζ

3

assumed
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Stringent tests exist on a range of ‘local’ scales. 
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No observed deviations from GR. 
Sotani	  2009	  



Gravity at larger, 
cosmologically interesting 

scales is comparatively 
poorly constrained. 

 
We do have a range of 
cosmological probes 

available at a variety of 
scales which are differently 

sensitive to metric 
perturbations. 

 
Combined probes break 

degeneracies. 
Image credit: Max Tegmark
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•  Non-linear mechanism to recover GR locally. 

Screening Mechanisms 

Chameleon- modifiy Einstein-Hilbert action to include a scalar potential 
V(phi) and a more general coupling, A(phi), to matter fields. 

Yukawa-like modifications with finite �. For astrophysical tests we will work
with e↵ective parameters that may have a scale and time dependence, but a
similar expansion of the metric is still useful.

The Brans-Dicke theory given by (2) has identical PPN parameter values
as in GR, except for � = (1 + !

BD

)/(2 + !
BD

). Since � is the most relevant
PPN parameter for the modified gravity theories of interest, we focus on this
parameter for the rest of our discussion.

The tightest constrain on � comes from time-delay measurements in the solar
system, specifically the Doppler tracking of the Cassini spacecraft, which gives
� � 1 = (2.1 ± 2.3) ⇥ 10�5 [80]. Light deflection measurements, meanwhile,
constrain � at the 10�4 level [81]. The observed perihelion shift of Mercury’s
orbit sets a weaker limit of 10�3 [82].

As mentioned earlier, GR satisfies an extended version of the equivalence
principle, the SEP, which states, in particular, that macroscopic objects follow
the same trajectory in a uniform gravitational field as test masses. In other
words, the universality of free-fall is preserved in GR even when accounting for
self-gravity contributions. The SEP is violated in Brans-Dicke theories and in
all of the MG theories considered here. Violations of the SEP result in the
Nordtvedt e↵ect [83] — a di↵erence in the free-fall acceleration of the Earth
and the Moon towards the Sun, which is detectable in Lunar Laser Ranging
(LLR). (Because the Earth and the Moon have di↵erent compositions, however,
one must worry about a fluke cancellation between WEP and SEP violations
in this measurement. To disentangle these e↵ects, laboratory tests of the WEP
have been performed using tests masses with Earth-like and Moon-like com-
positions [84].) Searches for the Nordtvedt e↵ect in LLR data constrain PPN
deviations from GR at the 10�4 level [1].

2. Modified Gravity Theories

In this Section we review various proposals for modifying GR at large dis-
tances. The list is by no means exhaustive — our goal is to provide the
reader with an overview of a few broad classes of theories that have attracted
considerable interest over the last few years, highlighting key theoretical and
observational di↵erences among them. For this purpose, we find it useful to
group theories based on the three qualitatively di↵erent non-linear mechanisms
through which GR is approximately recovered locally. These are the chameleon
(Sec. 2.1), Vainshtein (Sec. 2.3) and symmetron (Sec. 2.2) mechanisms.

2.1. Chameleon/f(R) Field Theories

Chameleon field theories generalize (3) to include a scalar potential V (�),
whose properties will be discussed shortly, as well as a more general coupling
A(�) to matter fields:

S
cham

=

Z
d4x

p�g

✓
M2

Pl

2
R � 1

2
(@�)2 � V (�)

◆
+ S

matter

⇥
g
µ⌫

A2(�)
⇤

. (6)

7

V
e↵

(�)

�

V (�)

A(�)⇢

Figure 1: The chameleon e↵ective potential V
e↵

(solid curve) is the sum of two contributions:
the actual potential V (�) (dashed curve), plus a density-dependent term from its coupling to
matter (dotted curve).

One can allow di↵erent couplings to the various matter fields, thereby intro-
ducing violations of the Equivalence Principle. Furthermore, one can also in-
troduce a coupling to the electromagnetic field strength, which induces photon-
chameleon mixing in the presence of magnetic fields [85, 86]. For the purpose
of this review article, we focus on the simplest case of a universal, conformal
coupling of the chameleon, as in (6).

The equation of motion for � that derives from this action is

2� = V
,�

� A3(�)A
,�

T̃ , (7)

where T̃ = g̃
µ⌫

T̃µ⌫ is the trace of the energy-momentum tensor defined with
respect to the Jordan-frame metric g̃

µ⌫

= A2(�)g
µ⌫

. Since matter fields couple
minimally to g̃

µ⌫

, this stress tensor is covariantly conserved: r̃
µ

T̃µ⌫ = 0.
To study the field profile on solar system and galactic scales, we can ap-

proximate the metric in (7) as flat space, ignore time derivatives, and focus on
the case of a non-relativistic, pressureless source. In terms of an energy density
⇢ = A3(�)⇢̃ conserved in Einstein frame, we obtain

r2� = V
,�

+ A
,�

⇢ . (8)

Thus, because of its coupling to matter fields, the scalar field is a↵ected by
ambient matter density. Its profile is governed by an e↵ective potential

V
e↵

(�) = V (�) + A(�)⇢ . (9)
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matter (dotted curve).
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ducing violations of the Equivalence Principle. Furthermore, one can also in-
troduce a coupling to the electromagnetic field strength, which induces photon-
chameleon mixing in the presence of magnetic fields [85, 86]. For the purpose
of this review article, we focus on the simplest case of a universal, conformal
coupling of the chameleon, as in (6).

The equation of motion for � that derives from this action is
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To study the field profile on solar system and galactic scales, we can ap-

proximate the metric in (7) as flat space, ignore time derivatives, and focus on
the case of a non-relativistic, pressureless source. In terms of an energy density
⇢ = A3(�)⇢̃ conserved in Einstein frame, we obtain

r2� = V
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+ A
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Thus, because of its coupling to matter fields, the scalar field is a↵ected by
ambient matter density. Its profile is governed by an e↵ective potential

V
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8•  Local density: 1 g/cm3 

•  Cosmic density: 1x10-30g/cm3 
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•  Non-linear mechanism to recover GR locally. 

Screening Mechanisms 

Chameleon- modifiy Einstein-Hilbert action to include a scalar potential 
V(phi) and a more general coupling, A(phi), to matter fields. 

Symmetron- scalar field, small mass everywhere. VEV depends on local 
mass density. VEV large in low mass regions and vice versa. Coupling of 
scalar to matter is proportional to VEV 

Vainshtein- non-linearities in the 
longitudinal mode of the graviton 
dominate in the presence of 
astrophysical sources à decouple 
from matter, applied to theories of 
massive/resonance gravity e.g. DGP 

Scalar-tensor

GR
GR

GR

Donnacha	  Kirk	  
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Screening Mechanisms 
Environment%dependence%

Modified%gravity%models%predicts%modificaAons%of%gravity%within%some%criAcal%length%scale.%In%models%
with%screening%mechanisms%one%also%generally%have%a%criAcal%mass/density%which%determines%if%
screening%occurs.%

Observables%can%have%a%mass/scale%dependence!%

Screening%can%also%occur%for%objects%below%this%criAcal%density%given%that%they%reside%in%a%highTdensity%
region.%

Observables%can%also%have%an%environment%dependence!%
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of our map is shown in Fig. 9. The map is generated for di↵erent values of background Compton

length �
C

(1 to 10 Mpc); each one corresponds to models with di↵erent f
R0

parameter. Fig. 9

shows the result for the F5, F6 and F7 models. Almost the entire volume is unscreened under a

F5 model – with the exception of massive and rare galaxy clusters, deep enough potential wells do

not exist. While most of the volume also appears unscreened in the F6 and F7 models, galaxies

reside preferentially in or near the screened regions so one has to be careful – for a specific galaxy

sample, the fraction of screened galaxies depends on their mass distribution since the locations of

galaxies (field vs. group) correlate with mass. The screening map and catalogs we make available

allow one to determine the screening level for a galaxy at any location within the volume covered.

Fig. 9.— The environmental screening map generated in the SDSS region at 210 Mpc (z = 0.05)

for 10 ⇥ 10 degrees of survey area, approximately 38 ⇥ 38 Mpc, with 2 arcmin resolution. The

external potential |�
ext

|/c2 is shown, with the screening condition evaluated using Eq. 8 for models

with f
R0

= 10�5, 10�6 and 10�7 (left, middle and right panels). The cut in screening classification

is indicated in the colorbar as 3/2 f
R0

and also shown in the maps as a white contour line (regions

inside the contour are screened). Almost the entire volume is unscreened in the F5 model. Even

in the F6 and F7 models most of the volume is unscreened. But since galaxies are preferentially

located in or near the high density (screened) regions, a careful evaluation of screening for a desired

galaxy sample is necessary.

As an example, we study the scatter in |�
ext

|�M
dyn

for a set of nearly edge-on, rotationally

supported galaxies selected to study warps as a probe for modified gravity following Jain and

VanderPlas (2011). The details of the test will be presented elsewhere. These galaxies are selected

inside the SDSS footprint. In Fig. 8 we plot |�
ext

|� v
c

for these galaxies for models F5 (left), F6

(middle) and F7 (right). The peak circular velocity v
c

is used a proxy for M
dyn

. We overplot the

limits for unscreened/screened following Eq. 6 using the conversion
✓
v
c

(km/s)

100

◆
2

=
f
R0

2⇥ 10�7

. (11)

Note how Fig. 10 and Fig. 2 are similar in range since the halo mass limit is similar in data and

simulations (M > 5 ⇥ 1011M�). In the F5 model, we su↵er from the small number of screened

Possible to experimentally test screening mechanisms astrophysically. 

Make a 
‘screening map’. 

Look for 
unscreened 
objects e.g. 
isolated dwarf 
galaxies. 
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Parameterisations 

•  Don’t attempt a consistent theory- look for generic deviations from GR. 
•  Labour-saving for both theoreticians & observers. 
•  Assume gravity theory reproduces the phenomenology of an effective w 
à Look for signatures in the growth of structure which differentiate MG/DE. 

Cosmology from lensing & redshift distortions 3

RSD Redshift Space Distortions
WL Weak Lensing
BAO Baryon Acoustic Oscillations
GG Galaxy-Galaxy auto-correlation
MAG Magnification from GG auto and cross-correlation
SS Shear-Shear correlations
GS Galaxy-Shear correlations

WL-all combination of SS, GS, GG and MAG
F Fain sample of galaxies 22.5 < iAB < 24
B Bright sample of galaxies iAB < 22.5

F+B Combination of independent F and B samples
FxB Cross-correlation of F and B over same area

Table 1. Notation and acronyms used in this paper.

any spectroscopic surveys to the same depth. Unlike most
spectroscopic surveys, which target predetermined galaxies,
PAU will contain all the objects in the surveyed area to
a given brightness. In our initial studies for PAUCam, we
only explored BAO with iAB < 22.5 LRG galaxies (Benitez
et al. 2009). However, as we discuss next, this is a rather
restrictive use for the PAUCam data. A similar approach
has been taken by several spectroscopic surveys which plan
to measure BAO at high redshifts by selecting appropriate
spectroscopic targets out of a given parent photometric cat-
alog. Here we will consider forecasts using both the faint
photometric and bright (quasi) spectroscopic samples and
we will show that one can get significantly better cosmologi-
cal constraints when using probes based on the combination
of WL and RSD.

We will consider both a modest 200 deg2 PAU-like Sur-
vey and a more ambitious 5000 deg2 survey. Such a survey
could also result from the Dark Energy Survey (DES), which
will image 5000 deg2 in five passbands to 24th mag over 5
years starting in 2012, producing weak lensing shape mea-
surements for about 200 million galaxies. A massive follow-
up spectroscopic survey over a substantial part of the DES
footprint, e.g., using multi-fiber spectrographs such as Big-
BOSS or DESpec, would enable RSD measurements of the
lensing population and the implementation of this cross-
correlation technique. Unlike BAO or supernovae, WL and
RSD can also provide very valuable information on cosmic
growth history and this is a key ingredient to understand
the physics of the accelerating Universe.

This paper is organized as follows. In §2 we present the
modeling, methodology and di↵erent assumptions used. We
include a subsection on how we model galaxy bias and an-
other one on modeling of redshift space distortions. Section
3 describes the approximations we make for weak gravita-
tional lensing. The reader familiar with these techniques can
directly jump to §4, where we present our fiducial surveys.
In §5 we present results of our forecast as a function of the
di↵erent ingredients , to disentangle the di↵erent contribu-
tions to the FoM. This section could also be skipped if the
reader is not interested in such details. In §6 we present the
main result in this paper, i.e. the comparison of forecasts
for di↵erent surveys. We finish in §7 with some conclusions
and summary of the main results. Table1 summarizes the
notation that will be used in this paper.

2 MODELING

In this section we will introduce the di↵erent assumptions
and modeling used in this paper. Section 2.1 and 2.2 intro-
duce the cosmological model and the parameters that we
want to study. In Section 2.3 we present the Fisher Matrix
approach and the figures of merit that will be used to com-
pare experiments. Sections 2.4 and 2.5 present and justify
the models for galaxy bias and redshift space distortions.

2.1 Growth and Cosmic History

The cosmic expansion history, a = a(t) orH = H(t), in a flat
Friedman Lemaitre Robertson Walker (FLRW) background
with matter density ⇢m and dark energy (DE) equation of
state w = pDE/⇢DE , can be written as:

H2

⌘

✓
ȧ

a

◆
2

=
8⇡G
3

(⇢m + ⇢DE)�
k

a2

(1)

= H2

0

h
⌦ma�3 + ⌦ka

�2 + ⌦DEa
�3(1+w)

i

where ⌦k = 1�⌦m�⌦DE measures deviations from flat cur-
vature k = 0 and we have neglected radiation. Our fiducial
model corresponds to ⇤CDM : a flat universe with w = �1,
so that the DE density is constant with redshift z. We will
explore how well our di↵erent observational probes can con-
straint w and its variation w = w(z).1 Parameters w

0

and
wa are used to characterize the evolution of DE equation of
state (Chevallier & Polarski 2001, Linder 2003):

w(z) = w
0

+ wa(1� a) = w
0

+ waz/(1 + z) (2)

According to General Relativity (GR), given this cosmic
history, the equations that determine the growth history, i.e.
the cosmic evolution of the linear density contrast �, are of
the form (Peebles 1980; Bernardeau et al. 2002)

�̈ + 2H �̇ = 4⇡G⇢m� (3)

with the solution

� = D(a)�(0) (4)

where the growth factor D(a) depends on the expansion his-
tory H(a) (through w(a)) and on ⌦m(a). Any discrepancy
found between the observed growth and the growth D pre-
dicted for a given expansion history H can be use as a test
for modifications to GR or variations on the cosmological
model. This linear growth can also be characterized by its
derivative, the velocity growth factor:

f ⌘

d ln D

d ln a
=

�̇

�
⌘ ⌦�

m(a) (5)

where � is the gravitational growth index (see Linder 2005).
So when normalized to D = 1 today, then

D(a) = exp


�

Z
1

a

d ln a f(a)

�
(6)

1 When w = w(z) we need replace w in ⌦DEa�3(1+w) in Eq.1
by the corresponding integral over redshift.

c
� 2011 RAS, MNRAS 000, 1–10

γ parameterises the growth of structure. 

1 parameter formalism. 

γ = 0.55 in GR 
γ = 0.68 in DGP etc. 
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•  Cosmological perturbation theory in the weak-field limit 
where we can linearise the Einstein equations. 4 variables. 

In GR: 

2 parameter formalism. 

Equations for talks

Donnacha Kirk

March 6, 2013

1 Equations

Gµν = 8πGTµν (1)

Gµν+Gdark
µν = 8πGTµν (2)

Gµν = 8πG
(

Tµν+T dark
µν

)

(3)

Gµν = 8πGTµν (4)

Gµν = 8πG
(

Tµν+T dark
µν

)

(5)

Gµν+Gdark
µν = 8πGTµν (6)

SEinstein-Hilbert =
1

16πG

∫

d4x
√
−gR (7)

f(R) = R−
µ4

R
(8)

δ, θv,Ψ,Φ (9)

ds2 = −(1 + 2Ψ)dt2 + (1− 2Φ)a2(t)dx2 (10)

Rµν −
1

2
gµνR = −

8πG

c4
Tµν (11)

Rµν −
1

2
gµνR = −8πGTµν (12)

ds2 = (1 + 2ψ)dt2 + (1− 2φ)a2(t)dx2 (13)

k2(φ+ ψ) == 4πGeff (k, z)ρ̄MGa
2δMG (14)
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•  Need 4 equations: 2 come from conservation of energy-
momentum, 2 from a theory of gravity: 
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µν

)

(3)

Gµν = 8πGTµν (4)

Gµν = 8πG
(

Tµν+T dark
µν

)

(5)

Gµν+Gdark
µν = 8πGTµν (6)

SEinstein-Hilbert =
1

16πG

∫

d4x
√
−gR (7)

f(R) = R−
µ4

R
(8)

δ, θv,Ψ,Φ (9)

ds2 = −(1 + 2Ψ)dt2 + (1− 2Φ)a2(t)dx2 (10)

k2Ψ = −4πµ(k, z)Ga2ρ∆ (11)

Φ = γ(k, z)Ψ (12)

µ(k, z) = 1 (13)

γ(k, z) = 1 (14)
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No agreement on form of these 
parameters, let alone notation. 



1 

Parameterizations 
1, 2 Parameters 

2 

3 

6 

8 

1
1 

1
2 

14 

15 

16 

17 

20 

21 

24 

25 

30 

33 

34 

35 

2-Parameters 

1-Parameter 

γ,  Growth  Parameter 

4 

5 

9 

13 

18 

26 

28 

31 

36 

37 

38 

40 

41 

42 

43 

22 

27 

Other 

Owen	  et	  al.	  2013	  (in	  prep.)	  



How useful is the 2 parameter formalism? 
•  Motivated, at least in the quasi-static approx. 
•  Convenient: 2 parameters can easily be put into 

a modified Einstein-Boltzmann solver. 
 

but… 
 

•  Free functional form- hard to constrain arbitrary 
function of scale/redshift. 

•  Only valid at sub-horizon scales, linear regime. 
•  Doesn’t cover the full theory space. 
•  Even a smoking gun detection won’t necessary 

lead to a particular theory. 
•  Is there a smoking gun without a particular 

theory?  
e.g. could clustering dark energy mimic any 
signature? 

Donnacha	  Kirk	  
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FIG. 5: Fisher constraints on ⌘ and µ from cross-correlated
CMB and weak lensing measurements (Stage I) are shown
by the red area (dot-dashed contour). The improvement ob-
tained by adding Stage I cluster counts is seen in the green
area (solid contour). The outer ellipse corresponds to the
inner ellipse of Fig. 4. Adding an uncertainty in the mass as-
signment for the clusters of �M = 0.25 decreases the impact
of adding cluster data as shown by the yellow (dashed) ellipse.

sic ellipticity, redshift bins and photometric errors as-
sumptions for all Stages as it is unclear how photometric
redshift resolution will evolve as surveys increase in size
and complexity.
Our forecasts are based on Fisher matrix estimates of er-
rors in a subset of parameters that comprises the MGPs,
⌘ and µ, and the two parameters from the standard model
that are expected to be most correlated with them, the
total matter density ⌦

m

and the primordial amplitude of
scalar curvature perturbations A. In varying only these
four parameters we are assuming that the remaining four
standard ⇤CDM parameters are well constrained by sig-
nals orthogonal to those being used in our analysis. A
combination of high resolution CMB spectra, including
polarisation E-modes, and a standard prior on the value
of the Hubble rate will ensure most of the remaining pa-
rameters are fixed to within a few percent of their nom-
inal values, which should have a minimal impact on the
four parameters being considered in this work.
An alternative to our Fisher matrix based method would
be to Monte Carlo Markov Chain (MCMC) sample the
joint posterior distribution of our parameter set by eval-
uating the likelihood explicitly. However this would in-
volve the definition of a likelihood as a function of real-
isations of the observables (and their cross–correlation)
and the added complexity is not warranted for this kind
of exercise at this stage.

It should be noted that use of a Fisher matrix to estimate
parameter errors assumes that the observables are dis-
tributed as Gaussian variates. This is not true in all cases
considered here since we are considering power spectra
and number counts but as long as the true answer lies
close to our fiducial values for the four parameters the
errors should give a good indication of the constraints.
Given a set of n, uncorrelated measurements C

a

, with
a = 1, ..., n and measurement errors �C

a

, the Fisher ma-
trix for a set of m parameters �

↵

with ↵ = 1, ...,m, can
be evaluated as

F
↵�

=
nX

a=1

1

�C
a

@C
a

@�
↵

@C
a

@�
�

1

�C
a

, (24)

where � = 1, ...,m.
The Fisher matrix represents the ensemble average of the
negative curvature in the log likelihood of the model pa-
rameters and its inverse, in this limit, is therefore the
covariance matrix in those parameters. The Fisher ma-
trix is simple to evaluate since it involves only the first
derivatives of the signal with respect to the model pa-
rameters. These can be evaluated either analytically or
numerically. Here we use a central di↵erence scheme to
numerically approximate the derivatives to second order
in the step-size. The central di↵erence is sampled by
evaluating the models with given step-sizes either side of
the fiducial model in all parameter directions.
For the cluster counts case the measurement consists of
counts in each of twenty redshift bins N

i

, as shown in
Figure 1 for the fiducial model, and the Fisher matrix is
calculated as

F
↵�

=
20X

i=1

1

�2

Ni

@N
i

@�
↵

@N
i

@�
�

, (25)

where we have assumed a shot noise model for the error
in the counts.
Fisher matrices from independent data can be added and
then inverted to obtain error estimates for the combina-
tion of data. Since we will rely heavily on the cross–
correlation of CMB and weak lensing measurements to
extract the relevant signal we calculate the combined
Fisher matrix for this cross–correlation to add to (25).
The Fisher matrix formalism can be easily extended to
the correlated measurement case. We treat the combina-
tion of CMB and weak lensing measurements at a given
multipole ` as a matrix, C

`

, of angular, cross–correlation
power spectra with dimension n⇥ n. In our case the in-
dex n spans both CMB and convergence angular power
spectrum measurements (over the four redshift bins) i.e.
T,

1

,
2

,
3

,
4

with the symmetric form

C
`

⌘

0

BBB@

CTT

`

CT1
`

CT2
`

...

. C11
`

C12
`

...

. . C22
`

...

. . . ...

1

CCCA
. (26)

Thomas	  &	  Contaldi	  	  2011	  



•  Attempt to do for cosmological tests what PPN did for 
solar-system tests. 

•  Relevant all the way to horizon scales. 

•  Requires a large number of free 
Functions- ambitious. 
 
•  Allows any/many(?) MG theories  
to be expressed in the same language. 

Parameterised Post-Friedmann (PPF) formalism 
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Theory K(φ,X ) G3(φ,X ) G4(φ,X ) G5(φ,X )

Scalar-tensor theory MPω(φ)X
φ

− V (φ) 0 MP

2 φ 0

f(R) gravity −
M2

P

2 (RfR − f(R)) 0
M2

P

2 fR 0

the covariant Galileon −c2X
c3
m3 X

M2
P

2 − c4
m6 X 2 3c5

m9 X 2

Horndeski’s original notation
κ9 + 4X (κ̆8,φ − 2κ̆3,φφ)

−2
(

6κ̆1,φφ + 8κ̆1,φ
−4 (κ̆1,φ + κ̆3 − X κ̆3,X ) −4κ1

(used for the Fab Four) −κ̆8 +Xκ8 − 8Xκ3,φ

)

Kinetic Gravity Braiding K(φ,X ) G3(φ,X ) 1
2M

2
P 0

Quintessence & phantom fields εX − V (φ) 0 1
2M

2
P 0

K-essence & K-inflation K(φ,X ) 0 1
2M

2
P 0

TABLE IV: This table lists the choices for the four free functions of the Horndeski Lagrangian that reproduce some previously-
studied theories of modified gravity. In the table above, if a function is left in general terms then the choice is arbitrary. For
the covariant Galileon, ci are dimensionless constants and m is a mass scale. For the fourth line, κ̆=

i

∫

κi dX and expressions
for the κi that give rise to the Fab Four are presented in [31]. In the penultimate line, ε = +1 for quintessence and ε = −1 for
phantom scalar fields.

GT ≡ 2

[

G4 − 2XG4,X − X

(

Hφ̇
a2

G5,X −G5,φ

)]

(82)

aΘ = −φ̇XG3,X + 2HG4 − 8HXG4,X − 8HX 2G4,XX + φ̇G4,φ + 2X φ̇G4,φX

−
H2

a2
φ̇
(

5XG5,X + 2X 2G5,XX

)

+ 2HX (3G5,φ + 2XG5,φX ) (83)

a2 Υ = a2{XK,X + 2X 2K,XX}+ 12Hφ̇XG3,X + 6Hφ̇X 2G3,XX − 2a2{XG3,φ + X 2G3,φX }

− 6H2G4 + 6
[

H2
(

7XG4,X + 16X 2G4,XX + 4X 3G4,XXX

)

−Hφ̇
(

G4,φ + 5XG4,φX + 2X 2G4,φXX

)

]

+
1

a2

{

30H3φ̇XG5,X + 26H3φ̇X 2G5,XX + 4H3φ̇X 3G5,XXX

}

− 6H2X
(

6G5,φ + 9XG5,φX + 2X 2G5,φXX

)

(84)

where the relation X∂X φ̇ = φ̇/2 has been used. Note that we have used conformal time, contrary to the authors of
[103]. The gauge-invariant perturbation of the scalar field is:

χ̂ =
δφ

MP
−

φ̇

MP

1

6H
(β + k2ν) (85)

Using a tilde to denote division by the square of the reduced Planck mass (ie. G̃T = GT /M2
P = κGT ), the PPF

coefficients for Horndeski theory are:

A0 = −2

(

1−
aΘ̃

H

)

−
φ̇

H
a2

k2
µ̃+

2

H2k2

(

Ḣ −H
φ̈

φ̇

)

(a2Υ̃+ 3HaΘ̃)

B0 =
1

kH

(

κa2ρM − 2(H2 − Ḣ)
Θ̃a

H

)

C0 = 2(1− G̃T )− 2
˙̃GT

H

(

1 + 3
Ḣ
k2

)

− 6
G̃T

k2

(

2Ḣ+
Ḧ
H

)

−
3Ḣ
k2H2

κa2ρM

+
6aΘ̃

Hk2

(

4Ḣ− 2
Ḣ2

H
+

Ḧ
H

)

−
12φ̈2

k2φ̇2

(

G̃T −
aΘ̃

H

)

+
6Ḣa ˙̃Θ

H2k2
−

3a2Ṽφ̇
Hk2

3

k2φ̇

[

2φ(3)
(

G̃T −
aΘ̃

H

)

+ φ̈

(

2 ˙̃GT −
2a ˙̃Θ

H
+ 4G̃T

(

H+
Ḣ
H

)

− 8aΘ̃+
1

H
κa2ρM

)]

16

C1 =
2k

H
(1− G̃T ) +

6

kH
(H2 − Ḣ)

(

1−
Θ̃a

H

)

D0 = 1− G̃T −
˙̃GT

H
D1 =

k

H
(1− G̃T )

F0 = −
2

kH
(3H2 + a2Υ̃) I0 = 2

(

1−
Θ̃a

H

)

J0 =
1

kH

[

−2k2(1− G̃T ) + 3κa2ρM − 6
d

dη
(aΘ̃) + 6(H2 + Ḣ)− 6

Θ̃a

H
(2H2 − Ḣ)

]

J1 = 6
(

1−
Θ̃a

H

)

K0 = −
k

H
(1− G̃T ) K1 = 0

α0 = MP

[

a2

k2
µ̃−

2

φ̇

(

Θ̃a−HG̃T

)

]

α1 =
2MP

kφ̇

[

a2Υ̃+ 3H aΘ̃
]

β0 =
MP

kφ̇2

[

−2φ̈
(

aΘ̃−HG̃T

)

− 2G̃T Ḣφ̇+ 2aΘ̃Hφ̇
]

−MP
κa2ρM

kφ̇
β1 =

2MP

φ̇

[

Θ̃a−HG̃T

]

γ0 =
2MP

φ̇

(

˙̃GT +HG̃T −HF̃T

)

+ 3MP
a2

k2
Ṽ γ2 =

6MP

φ̇

(

Θ̃a−HG̃T

)

γ1 =
MP

kφ̇

[

−6G̃T

(

Ḣ + 2H2 − 2H
φ̈

φ̇

)

+ 6
d

dη

(

aΘ̃−HG̃T

)

+ 6aΘ̃

(

3H− 2
φ̈

φ̇

)

− 3κa2ρM

]

ε0 =
MP

φ̇

[

˙̃GT +HG̃T −HF̃T

]

ε1 = ε2 = 0 (86)

µ and V are derivatives of the zeroth-order field equations
with respect to the scalar field (00 and ii components
respectively) - see [103] for the relevant expressions.
Table III F collects some ‘settings’ for the Horndeski

Lagangian functions that reproduce theories of current
interest. The application of the PPF formalism to Horn-
deski theory immediately brings a large realm of theory
space within reach of our parameterization.

G. GR with a Dark Fluid

Our final example should really be classed as a dark
energy model rather than a theory of modified gravity,
though arguably the distinction is not important. We
present the example of an adiabatic dark fluid character-
ized by a constant equation of state ωD and negligible
anisotropic stress. We will use this as an example of how
a theory with two additional fields can be recast as a
single-field theory (and hence type 1/2/3) in some cases.
The example also has relevance to theories that can be
usefully written as an effective fluid at the level of the
linearized gravitational field equations, e.g. quintessence
and its progeny (whilst an effective fluid interpretation is

possible for all theories, it is not always useful).
The zeroth-order modifications to the field equations

are simply:

a2X = κa2ρD a2Y = κa2ωDρD (87)

The two new fields are the fractional energy density
perturbation and the velocity perturbation, δD and θD,
which appear in the U -tensor as:

U∆ = κa2ρDδD UΘ = κa2ρD(1 + ωD)θD

UP = 3κa2ρDωDδD UΣ = 0 (88)

The fluid velocity is given by viD = ∇iθD. For an adia-
batic, shear-free fluid the conservation and Euler equa-
tions are:

δ̇D = −(1 + ωD)

(

k2θD +
1

2
β̇ − k2ε

)

(89)

θ̇D = −H(1− 3ωD)θD +
ωD

1 + ωD
δD − Ξ (90)

These correspond to the two components of the conser-
vation equation ∇µUµ

ν = 0. Eq.(89) can be used to elimi-
nate θD in favour of δD from the gravitational field equa-
tions, resulting in a theory with a single new field. After
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Figure 5. Left: Constraints on the modified gravity parameters in a flat ⇤CDM background from redshift space distortions (green), weak lensing (red), and
combined (blue). (68 and 95 per cent CL). The dashed and solid contours represent the 68 and 95 per cent condence intervals respectively. Two auxiliary
datasets are used here to break degeneracies with the conventional cosmological parameters. These are the small-angle anisotropies from WMAP7 (` > 100),
and a prior on H

0

from (Riess et al. 2011). The cross positioned at the origin denotes the prediction of General Relativity. Right: The red, green and blue
contours are the same as the left panel, except the prior on H

0

has been replaced by measurements of the Baryon Acoustic Oscillations as detailed in Section
3.2. The yellow contours signify the constraints derived from the full WMAP7 power spectra, including the large angular scales (` < 100). The white contours
in the left hand panel show the constraints when all data sets are analysed in combination.

Table 1. Parameter constraints for different combinations of dataset and parameter space. The three different backgrounds we explore are flat ⇤CDM, flat
wCDM and the non-flat wCDM which we denote as owCDM. All constraints make use of the small scale anisotropies from WMAP7 (` > 100), while those
marked ISW also utilise the larger angular scales.

Background Data (+ CMB + H0 ) µ0 ⌃0 ⌦m H0 �8 w ⌦K

⇤CDM CFHTLenS 1.2 ± 2.2 -0.17 ± 0.28 0.260 ± 0.024 71.3 ± 2.3 0.96 ± 0.24 · · · · · ·

⇤CDM RSD 0.08 ± 0.25 · · · 0.254 ± 0.023 71.8 ± 2.2 0.801 ± 0.024 · · · · · ·

⇤CDM CFHTLenS + RSD 0.05 ± 0.25 0.00 ± 0.14 0.256 ± 0.023 71.6 ± 2.2 0.804 ± 0.023 · · · · · ·

wCDM CFHTLenS + RSD + BAO -0.59 ± 0.34 -0.19 ± 0.11 0.272 ± 0.015 71.7 ± 1.8 0.820 ± 0.025 -1.19 ± 0.10 · · ·

owCDM CFHTLenS + RSD + BAO -0.65 ± 0.34 -0.26 ± 0.12 0.289 ± 0.021 71.6 ± 1.8 0.833 ± 0.028 -1.16 ± 0.10 0.0096 ± 0.0087

Background Data (+ CMB + BAO) µ0 ⌃0 ⌦m H0 �8 w ⌦K

⇤CDM CFHTLenS 1.0 ± 2.2 -0.31 ± 0.24 0.305 ± 0.018 67.2 ± 1.4 0.95 ± 0.24 · · · · · ·

⇤CDM RSD -0.13 ± 0.23 · · · 0.300 ± 0.017 67.5 ± 1.4 0.807 ± 0.023 · · · · · ·

⇤CDM ISW -0.62 ± 0.64 0.34 ± 0.22 0.294 ± 0.015 68.2 ± 1.2 0.768 ± 0.068 · · · · · ·

⇤CDM CFHTLenS + RSD -0.12 ± 0.23 -0.17 ± 0.10 0.300 ± 0.017 67.6 ± 1.4 0.807 ± 0.023 · · · · · ·

⇤CDM CFHTLenS + RSD + ISW + H0 -0.06 ± 0.21 -0.010 ± 0.068 0.273 ± 0.010 70.10 ± 0.97 0.803 ± 0.022 · · · · · ·

7 ALTERNATIVE PARAMETERISATIONS

In this section we consider the relationship between the (µ,⌃) pa-
rameterisation adopted in this work, and three other popular param-
eterisations.

7.1 � Parameter

A widely adopted parameterisation for quantifying anomalous
structure growth is the growth index � (Wang & Steinhardt 1998;
Linder 2005)

f(z) ' ⌦�
m(z) , (14)

c� 0000 RAS, MNRAS 000, 000–000

Current:	  CFHTLenS+	  

•  Gravity is being tested at cosmological 
scales. 

•  Combination of probes is crucial. 

•  Constraints will improve by an order of 
magnitude over next decade. 

•  Comparison of papers is confusing in the 
absence of a standard formalism. 

Donnacha	  Kirk	  
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Questions for Discussion 
•  Do we need a reason to test GR? 

•  Should we be falsifying particular theories or just “testing 
gravity”? 

•  Where should we focus our search- where we want our 
new theory to work or where we expect it to fail? 

•  Can MG/DE ever be differentiated? Are they really 
distinct? 

•  Can a parameterised approach work? Do you have a 
favourite? 

•  Where will we be in ten years? 

Donnacha	  Kirk	  
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�/ as a constant parameter of a MG theory, one can solve this equation for
a given background solution H(t). The ISW e↵ect discussed below extends to
very large scales and probes the superhorizon regime.

3.2.2. Quasi-static Newtonian Regime
In what follows, we will for the most part make the approximation of non-

relativistic motions and restrict ourselves to sub-horizon length scales. One
can also self-consistently neglect time derivatives of the metric potentials in
comparison to spatial gradients. These approximations will be referred to as
the quasi-static, Newtonian regime. Using the linearized fluid equations, the
evolution of density (or velocity) perturbations can be described by a single
second order di↵erential equation:

�̈ + 2H �̇ +
k2 

a2

= 0 . (85)

With �(~k, t) ' �
initial

(~k)D(k, t), we can substitute for  in terms of � using the
Poisson equation. Here we write the Poisson equation with the sum of potentials
on the left-hand side, as this is convenient for describing lensing and the ISW
e↵ect. Using the generalized gravitational “constant” G̃

e↵

we have

k2( + �) = �8⇡G̃
e↵

(k, t)⇢̄� . (86)

Using the two equations above, we obtain for the linear growth factor D(k, t):

D̈ + 2HḊ � 8⇡G̃
e↵

(1 + �/ )
⇢̄ D = 0 . (87)

From the above equation one sees readily how the combination of G
e↵

and
�/ alters the linear growth factor. Further, if these parameters have a scale
dependence, then even the linear growth factor D becomes scale dependent, a
feature not seen in smooth dark energy models.

We will use the power spectra of various observables to describe their scale
dependent two point correlations. As an example, the 3-dimensional power
spectrum of the density contrast �(k, z) is defined as

h�(~k, z)�(~k0, z)i = (2⇡)3�
D

(~k + k0)P
��

(k, z) , (88)

where we have switched the time variable to the observable redshift z. The power
spectra of perturbations in other quantities are defined analogously. We will
denote the cross-spectra of two di↵erent variables with appropriate subscripts.
For example, P

� 

denotes the cross-spectrum of the density perturbation � and
the potential  .

Figure 3 shows the linear and nonlinear power spectra P
��

(k, z) for f(R) and
the normal branch DGP models [181]. The dotted curves show the fractional
departures of the f(R) linear power spectrum (left panel) and normal branch
DGP (right panel) to ⇤CDM. These are simply the ratio of the square of the

33

•  Four perturbed varaibles: delta, 
theta, phi, psi 





Now I do not regret to have introduced this term. by
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•  move on to PPF 

•  How useful? 
convenient à put into a modified 
Einstein-boltzmann solver. 
Doesn’t cover the full theory 
space. 
Even a smoking gun detection 
won’t necessary lead to a 
particular theory. 
Is there a smoking gun? E.g. 
could clustering dark energy 
mimic any signature. 

•  E.g. eqn 2 params related to a 
particular theory. 

•  Works in the quasi-static 
newtonian regime (what about 
super-horizon/non-linear). 

2

MG parametrized form, proposed in [40], specializing it
to the f(R) case. In this parametrization the background
is fixed to that of ΛCDM and the modifications in the
linearized Einstein equation are encoded in two scale- and
time-dependent parametric function µ(k, a) and γ(k, a)

k2Ψ = −µ(k, a)4πGa2{ρ∆+ 3(ρ+ P )σ} (2)

k2[Φ− γ(k, a)Ψ] = µ(k, a)12πGa2(ρ+ P )σ (3)

where Ψ and Φ are the two scalar metric potentials in
the Newtonian gauge, σ is the anisotropic stress that
vanishes for baryons and CDM but not for relativistic
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Viable f(R) models must have s ∼ 4 in order to closely
mimic ΛCDM expansion [27], that is the case we are
interested in. Indeed the only free parameter we consider
in our analysis is the characteristic lengthscale λ1. It is
usual expressed in literature in term of the dimensionless
parameter B0 as follows:
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i.e. it gives the lenghtscale in units of the horizon scale.

III. DATA ANALYSIS METHOD

Our theoretical models are computed with the public
available code MGCAMB [40] v .2 while the analysis is
based on a modified version of CosmoMC [29] a Monte
Carlo Markov Chain code.
We consider the following set of recent CMB data

(publically available on the corresponding web pages):
WMAP9 [28], SPT [23], ACT [22] including measure-
ments up to a maximum multipole number of lmax =
3750.
For the ACT experiment we use the ”lite” version of

the likelihood [36] that has been tested to be correct also
in the case of the extension respect to Λ-CDM models.
We also consider a gaussian prior on the Hub-

ble constant (hereafter HST prior) H0 = 73.8 ±

2.4 kms−1Mpc−1, consistently with the measurements of
the HST [33].
We include information from measurements of bary-

onic acoustic oscillations (BAO) from galaxy surveys,
combining four datasets: 6dFGRS from [30], SDSS-DR7
from [31], SDSS-DR9 from [34] and WiggleZ from [35].
We refer to this dataset as BAO.
We sample a seven-dimensional set of cosmological pa-

rameters, adopting flat priors on them: the B0 modi-
fied gravity parameter, the baryon and cold dark matter
densities Ωbh2 and Ωch2, the ratio of the sound horizon
to the angular diameter distance at decoupling θ, the
optical depth to reionization τ , the scalar spectral in-
dex ns, the overall normalization of the spectrum As at
k = 0.002 Mpc−1.
Given the tension between the ACT and SPT exper-

iment in the lensing ampllitude, we also consider varia-
tions in the lensing amplitude parameter AL as defined
in [26]. Finally, the amount of helium abundance in the
universe Yp is fixed by assuming Big Bang Nucleosynthe-
sis in the standard case of three neutrino families.

IV. RESULTS

Our main results are reported in Table I. Since the
ACT and SPT datasets are reporting significantly dif-
ferent constraints on B0 we consider these two datasets
separately.
As we can see, both ACT and SPT are not providing

any evidence for MG. However, the SPT dataset gives
significantly stronger constraints on B0 (B0 < 0.14 at
95% c.l.) respect to those derived by ACT (B0 < 0.90 at
95% c.l.). The difference appears as even more striking
in Figure 1 (Left Panel), where we report the two poste-
riors on B0 coming from the two experiments: while SPT
strongly constrain B0, the posterior from ACT shows a
bimodal distribution, suggesting an higher compatibility
with modified gravity models. The reason of this differ-
ence is mainly due to the differenr lensing signal present
in the ACT e SPT TT spectra (see [24]): since f(R) MG
models increase the lensing signal they are more consis-
tent with the larger amplitude of ACT than with the
smaller amplitude of SPT. The best fit value for ACT
is indeed B0 ∼ 0.78 even if this dataset still does not
provide any compelling evidence for MG.
The inclusion of the HST prior and of the BAO dataset

improves the constraints (B0 < 0.12 at 95% c.l. from
SPT and B0 < 0.86 at 95% c.l. from ACT), however
not in a significant way, clearly showing that most of the
constraining power is coming from the CMB spectrum
distortions introduced by gravitational lensing.
It is interesting to consider the impact of MG on the

standard cosmological parameters. As we see from the
Table, and as already showed in [40], there is little cor-
relation between B0 and the, standard, six cosmological
parameters. We found that the largest correlations are
with scalar spectral index nS and amplitude AS . How-
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