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To describe the large-scale behaviour as FRW we must therefore understand: 
 

  How to fit a homogeneous geometry to an inhomogeneous universe. 

 - fitting problem? averaging problem? 

  The evolution of the homogeneous geometry. 

 - as in Einstein’s equation? back-reaction? 

  How to link observations to the large-scale evolution. 

 - scale dependence? average of null geodesics? 
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  Fit observations to an FRW geometry. 

 - the standard approach to observational cosmology 

 - says little about the averaging or back-reaction problems directly 
 

  Foliate the universe with a set of hypersurfaces of constant time, and 
calculate the expansion of these. 

 - à la Buchert et al. 
 

  Smooth the geometry of spacetime on the full 4-dimensional manifold, 
until it has the required symmetry. 

 - à la Zalaletdinov et al. 
 

  Construct new cosmological models that do not use averaging, or that do 
not assume the large-scale evolution of the universe from the outset. 

 - bottom-up approaches 
 

  … 
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not a 
closed 
system 

applicable to scalars only 

foliation 
dependent 

not direct 
observables 



Observables 

• The monopole from the Kristian-Sachs dL(z) gives: 
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[Clarkson & Umeh,  
 CQG 28, 164010 (2011)] 
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Observables 

• The monopole from the Kristian-Sachs dL(z) gives: 

 

 

 
 

• Supernova observations imply acceleration based on complicated fitting 
procedures: 
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[SNLS 1st year data] 



Recent results 

• In spacetimes with a homogeneity scale, Buchert’s equations can closely 
follow the mean value of large-scale observations. 
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• If back-reaction is responsible for the supernova observations, then Clarkson’s 
and Buchert’s measures of acceleration should be expected to be very 
different. 
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[Zalaletdinov, Bull. Astron. Soc. India 25, 401 (1997)] 

obeys its own conservation 
and constraint equations 



Solutions 

• The FLRW solutions to Zalaletdinov’s equations are: 
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• Luminosity distances calculated within this geometry are: 

 

[Coley, Pelavas & Zalaletdinov, PRL 95, 151102 (2005)] 
[van den Hoogen, JMP 50, 082503 (2009)] 

[Clarkson, Clifton, Coley, Sung, PRD 85, 043506 (2012)] 
see also [Clifton, Coley, van den Hoogen, JCAP 10, 044 (2012)] 
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Cosmology without averaging 

• Instead of averaging we can try to construct a universe from discrete 
masses, and compare it to FLRW: 



Tiling a closed space 

• There are six possible tilings of a closed space with regular polyhedra, and 
one with two balls: 



Exact solutions 
• At the maximum of expansion the geometry can be found exactly: 

[Clifton, Rosquist & Tavakol, arXiv:1203.6478 (2012)] 



Comparing to FLRW 

• Comparing to a spacetime with smoothly distributed mass: 

[Lindquist & Wheeler, Rev. Mod. Phys. 29, 432 (1957)] 
[Clifton & Ferreira, PRD 80, 103503 (2009)] 
[Clifton, Rosquist & Tavakol, arXiv:1203.6478 (2012)] 
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  Understanding the large-scale behaviour of inhomogeneous spacetimes is 
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  Back-reaction must be quantified in order to undertake precision cosmology. 

 

  More sophisticated models and methods may be required to make further 
progress on these problems. 



Thank you 


