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• The problem with predictions in multifield inflation

• A suggestion for a way forwards

• An analytic example

• Current numerical work

Overview 



10 Planck Collaboration: Constraints on inflation

Model Parameter Planck+WP Planck+WP+lensing Planck + WP+high-` Planck+WP+BAO

⇤CDM + tensor ns 0.9624 ± 0.0075 0.9653 ± 0.0069 0.9600 ± 0.0071 0.9643 + 0.0059
r0.002 < 0.12 < 0.13 < 0.11 < 0.12

�2� lnLmax 0 0 0 -0.31

Table 4. Constraints on the primordial perturbation parameters in the ⇤CDM+r model from Planck combined with other data sets.
The constraints are given at the pivot scale k⇤ = 0.002 Mpc�1.
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Fig. 1. Marginalized joint 68% and 95% CL regions for ns and r0.002 from Planck in combination with other data sets compared to
the theoretical predictions of selected inflationary models.

reheating priors allowing N⇤ < 50 could reconcile this model
with the Planck data.

Exponential potential and power law inflation

Inflation with an exponential potential

V(�) = ⇤4 exp
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is called power law inflation (Lucchin & Matarrese, 1985),
because the exact solution for the scale factor is given by
a(t) / t2/�2 . This model is incomplete, since inflation would
not end without an additional mechanism to stop it. Assuming
such a mechanism exists and leaves predictions for cosmo-
logical perturbations unmodified, this class of models predicts
r = �8(ns � 1) and is now outside the joint 99.7% CL contour.

Inverse power law potential

Intermediate models (Barrow, 1990; Muslimov, 1990) with in-
verse power law potentials

V(�) = ⇤4
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lead to inflation with a(t) / exp(At f ), with A > 0 and 0 < f < 1,
where f = 4/(4 + �) and � > 0. In intermediate inflation there
is no natural end to inflation, but if the exit mechanism leaves
the inflationary predictions on cosmological perturbations un-
modified, this class of models predicts r ⇡ �8�(ns � 1)/(� � 2)
(Barrow & Liddle, 1993). It is disfavoured, being outside the
joint 95% CL contour for any �.

Hill-top models

In another interesting class of potentials, the inflaton rolls away
from an unstable equilibrium as in the first new inflationary mod-
els (Albrecht & Steinhardt, 1982; Linde, 1982). We consider

V(�) ⇡ ⇤4
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where the ellipsis indicates higher order terms negligible during
inflation, but needed to ensure the positiveness of the potential
later on. An exponent of p = 2 is allowed only as a large field
inflationary model and predicts ns � 1 ⇡ �4M2

pl/µ
2 + 3r/8 and

r ⇡ 32�2⇤M2
pl/µ

4. This potential leads to predictions in agree-
ment with Planck+WP+BAO joint 95% CL contours for super-
Planckian values of µ, i.e., µ & 9 Mpl.

Models with p � 3 predict ns � 1 ⇡ �(2/N)(p � 1)/(p � 2)
when r ⇠ 0. The hill-top potential with p = 3 lies outside the

Problem: We don’t know how to confront multifield models
                with observation.

Planck collaboration arXiv: 1303.5082 
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Figure 1. Sketch showing the horizon crossing surface in a single field inflationary potential and a
two-field model. For a single field model, the horizon crossing surface is a single point, meaning that
observables are approximately insensitive to inflationary dynamics prior to crossing this point. For
the case of the two-field model, without knowledge of initial conditions one can not identify a single
inflationary trajectory that corresponds to what we observe. One must therefore consider all possible
inflationary trajectories.

by the value of the inflaton at the moment that scale left the horizon. If we take the largest
scales we observe to have left the horizon say 55 e-folds before the end of inflation, our
observations are generally insensitive to what happened before then, be it another 20 e-folds
of inflation or 200.

When there is more than one active field the situation changes. As illustrated in Fig. 1,
if the model involves Nf inflationary fields, instead of there being only one possible value
of the inflaton at horizon crossing, now there is an infinite set of possible locations in field
space forming an Nf � 1 dimentional hypersurface.3 Without specifying initial conditions,
it is not possible to say which inflationary trajectory corresponds to our observable universe
and since di�erent trajectories will in general give rise to di�erent values for observables, the
model is only as predictive as the volume in the space of observables permitted by the model.
If we are to seriously confront multifield models of inflation with observation, then it is of
paramount importance that this problem is overcome.

The obvious question then is whether a description of initial conditions can be derived
within the framework of the model. One can hope that an ultraviolet complete theory of
inflation will provide information on the initial state but calculations along this line are
clearly well beyond our current understanding of fundamental physics. A more promising
approach is to consider how chaotic inflation populates the potential. Although this issue
has received some attention in the past for the case of single field inflation (see for instance

3Discussed in more detail in section §2, this assumes only one trajectory passes through a given point in
field space.
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Multifield models are sensitive to initial conditions
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Prediction is 
single valued

Prediction 
is a PDF

V (�)
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�2

V (�1,�2)⌃f
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Split the problem into 2 parts:

1. Compute the PDF of initial conditions 

2. Use PDF of initial conditions to compute
    PDF for observables        (a.k.a the prediction)

f(✓)

p(o)



Strategy:   Use conservation of probability to map PDF of initial   
                  conditions         to a PDF for observables        .f(✓) p(o)

�1

�2

f
p(o)

o(✓)

⌃f

✓

Parameterise      
with variables   . 

p(o)|do| = f(✓)|d✓|

o



o(✓)Strategy:   Turning points in         enables robust predictions 
                  without detailed knowledge of initial conditions. 
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Figure 4. Sketch (Rotring pens on Bristol Board) of why a stationary point in the functional form
of o(�) will in general give rise to a spike in the density function p(o). The spacing of the red lines
represents the density function f(�) and how it is distorted under a change of variable to give p(o).
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Since                          , move to polar coordinates:
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Figure 2. Example plots of ns(⌅) and �(⌅) for scales leaving the horizon 55 e-folds before the end of
inflation in double quadratic inflation with masses m2/m1 = 9.

where here and what follows, unless explicitly written otherwise, fields only lie on the surface
�f and so the “*” label has been dropped. For quadratic inflation, the observables (2.4),
(2.8) and (2.10) become

P�(⌅, N) =
H2

4⇧2
N, (4.5)

ns(⌅, N)� 1 = �2⇥� 1

N
, (4.6)

�(⌅, N) = �8⇥2 � 2

N2
+ 4 (⇥1⇤1 + ⇥2⇤2) . (4.7)

The amplitude of the power spectrum is in a sense less interesting than the other observables
since it may always be adjusted by a pre-factor on the potential which does not a⇥ect the
inflationary dynamics. Other observables one might want to consider are the non-Gaussianity
parameter fNL and the tensor-to-scalar ratio r. For the case of double quadratic inflation, it
was shown in Ref. [42] that �6

5fNL = 1/N . Since �f is defined as being at a fixed number
of e-folds before the end of inflation, fNL is single valued over �f which is why it has not
been part of the discussion until now (the same is true for the tensor-to-scalar ratio). Hence,
for this example, the objective is to calculate p(ns,�). Fig. 2 shows plots of the spectral
index and running evaluated 55 e-folds before the end of inflation. As mentioned previously,
an important characteristic to bear in mind for what follows is that these observables are
periodic in ⌅.

4.1 Regarding the field space density function f�f

It is necessary to specify the density function f�f . As already mentioned, this is dependant
on the details of the model as well as the choice of measure. For the purposes of this paper
the distribution is chosen to be flat

f�f = c =
1�

�f
d�f

. (4.8)

Following Ref. [47], this choice is a statement of ignorance. We simply adopt the distribution
requiring the least additional assumptions. No further justification will be given at this stage,
however in §5.1 the implications of this choice will be discussed.
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Express observables as

Example:  Double quadratic inflation
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Example:  Double quadratic inflation V = 1
2m

2
1�

2
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1
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2
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2
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Try a flat distribution over the horizon crossing surface.
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Result!
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Is there something misleading about the use of iso   -fold slicing? 

Plots taken from Easther and Price arXiv: 1304.4244 
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See also Clesse, Ringeval, Rocher arXiv: 0909.0402 



2-field 3-field
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2-field 9-field
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• Expect sharp spike in PDF to be a common characteristic

• Prediction is surprisingly insensitive to initial conditions
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Is there a better way to study this? 

• What are the criteria for a predictive model?

• Is it sensible to consider initial conditions and model 
   parameters separately?

• Is there a better way to study multifield inflation than
   evolving individual classical trajectories?

p(o)|do| = f(✓)|d✓|



• Expect this property in a broad class of  
   models but still WIP.

• Spike in PDF is robust to different slicings. 

• Numerical tools extendable to arbitrary  
   potentials. 

Conclusions 


