An introduction to multi-field models of inflation

David Mulryne Queen Mary, University of London arXiv:1307.7095 with Joe Elliston, Reza Tavakol

An introduction to multi-field models of inflation

David Mulryne Queen Mary, University of London arXiv:1307.7095 with Joe Elliston, Reza Tavakol

- Inflation, but more than one field usually we think of light fields, but additional quasi-light or even additional heavy fields can matter.
- Two motivations:
 - Model driven string theory, supergravity, MSSM, Standard Model(?).
 - Phenomenological how do multi-field dynamics differ from single field dynamics what range of behavior is then allowed.

- 1. What changes when we move from one to many fields?
- 2. How can we tell?

- 1. What changes when we move from one to many fields?
- 2. How can we tell?

$$V(\phi) = \frac{1}{2}m_{\phi}^2\phi^2$$

- 1. What changes when we move from one to many fields?
- 2. How can we tell?

- 1. What changes when we move from one to many fields?
- 2. How can we tell?

$$V(\phi, \chi) = \frac{1}{2}m_{\phi}^{2}\phi^{2} + \frac{1}{2}m_{\chi}^{2}\chi^{2}$$

- 1. What changes when we move from one to many fields?
- 2. How can we tell?

$$V(\phi, \chi) = \frac{1}{2}m_{\phi}^2\phi^2 + \frac{1}{2}m_{\chi}^2\chi^2$$

- 1. What changes when we move from one to many fields?
- 2. How can we tell?

Two questions:

1. What changes when we move from one to many fields?

2. How can we tell?

Two answers:

Two answers:

 'Everything' - many initial conditions, isocurvature modes feed curvature mode, curved field-space metric, mass hierarchy -> isocurvature after inflation, non-Gaussianity.

Two answers:

- 'Everything' many initial conditions, isocurvature modes feed curvature mode, curved field-space metric, mass hierarchy -> isocurvature after inflation, non-Gaussianity.
- 2. It's really hard isocurvature can decay before or after inflation ends, 'detectable' non-Gaussianity is possible but perhaps 'unlikely'.

The Planck team – Ade et al. 2013

The Planck team – Ade et al. 2013

Intro to calculating observables

- The Want to track correlations of the fluctuations, $\delta \phi$ etc, ultimately want curvature perturbation, ζ , power-spectrum, bispectrum etc.
- \odot Community mainly uses δN (e.g. Lyth and Rodriguez 2005).
- Could/should be using perturbation theory (perturbed action or field equations), and QFT -> In-In (Maldacena 2003) or a differential version

Intro to calculating observables

- The fluctuations, $\delta \phi$ etc, ultimately want curvature perturbation, ζ , power-spectrum, bispectrum etc.
- \odot Community mainly uses δN (e.g. Lyth and Rodriguez 2005).
- Could/should be using perturbation theory (perturbed action or field equations), and QFT -> In-In (Maldacena 2003) or a differential version

Intro to calculating observables

- The fluctuations, $\delta \phi$ etc, ultimately want curvature perturbation, ζ , power-spectrum, bispectrum etc.
- \odot Community mainly uses δN (e.g. Lyth and Rodriguez 2005).
- Could/should be using perturbation theory (perturbed action or field equations), and QFT -> In-In (Maldacena 2003) or a differential version

Thursday, 19 September 13

What Planck does not tell us about inflation – arXiv:1307.7095

- Planck (Ade et al. 2013) "severely limits the extensions of the simplest paradigm"?
- 4 types of behaviour...
 - 1. Isocurvature drives evolution of curvature during inflation.
 - 2. Isocurvature drives evolution after inflation during `reheating'.
 - 3. Isocurvature converts to curvature suddenly at end of inflation.
 - 4. Isocurvature modulates the reheating rate of inflation.

- A large non-Gaussianity can be generated during slow-roll (Byrnes, Choi, Hall 2008, Elliston, Mulryne, Seery, Tavakol 2011 and others...).
- Requires particular initial conditions, relating to specific features.
- Can disappear in adiabatic limit (Meyers and Sivanandrum 2010, Elliston et al. 2011).

- A large non-Gaussianity can be generated during slow-roll (Byrnes, Choi, Hall 2008, Elliston, Mulryne, Seery, Tavakol 2011 and others...).
- Requires particular initial conditions, relating to specific features.
- Can disappear in adiabatic limit (Meyers and Sivanandrum 2010, Elliston et al. 2011).

Pretty pictures thanks to J. Elliston

- A large non-Gaussianity can be generated during slow-roll (Byrnes, Choi, Hall 2008, Elliston, Mulryne, Seery, Tavakol 2011 and others...).
- Requires particular initial conditions, relating to specific features.
- Can disappear in adiabatic limit (Meyers and Sivanandrum 2010, Elliston et al. 2011).

- A large non-Gaussianity can be generated during slow-roll (Byrnes, Choi, Hall 2008, Elliston, Mulryne, Seery, Tavakol 2011 and others...).
- Requires particular initial conditions, relating to specific features.
- Can disappear in adiabatic limit (Meyers and Sivanandrum 2010, Elliston et al. 2011).

Pretty pictures thanks to J. Elliston

- A large non-Gaussianity can be generated during slow-roll (Byrnes, Choi, Hall 2008, Elliston, Mulryne, Seery, Tavakol 2011 and others...).
- Requires particular initial conditions, relating to specific features.
- Can disappear in adiabatic limit (Meyers and Sivanandrum 2010, Elliston et al. 2011).

- A large non-Gaussianity can be generated during slow-roll (Byrnes, Choi, Hall 2008, Elliston, Mulryne, Seery, Tavakol 2011 and others...).
- Requires particular initial conditions, relating to specific features.
- Can disappear in adiabatic limit (Meyers and Sivanandrum 2010, Elliston et al. 2011).

Pretty pictures thanks to J. Elliston

- A large non-Gaussianity can be generated during slow-roll (Byrnes, Choi, Hall 2008, Elliston, Mulryne, Seery, Tavakol 2011 and others...).
- Requires particular initial conditions, relating to specific features.
- Can disappear in adiabatic limit (Meyers and Sivanandrum 2010, Elliston et al. 2011).

- A large non-Gaussianity can be generated during slow-roll (Byrnes, Choi, Hall 2008, Elliston, Mulryne, Seery, Tavakol 2011 and others...).
- Requires particular initial conditions, relating to specific features.
- Can disappear in adiabatic limit (Meyers and Sivanandrum 2010, Elliston et al. 2011).

Pretty pictures thanks to J. Elliston

- A large non-Gaussianity can be generated during slow-roll (Byrnes, Choi, Hall 2008, Elliston, Mulryne, Seery, Tavakol 2011 and others...).
- Requires particular initial conditions, relating to specific features.
- Can disappear in adiabatic limit (Meyers and Sivanandrum 2010, Elliston et al. 2011).

Pretty pictures thanks to J. Elliston

2) Curvaton-type behaviour

- A subdominant field at the end of inflation can become important if it decays later than other field(s), and oscillates such that it redshifts more slowly than radiation -> 'Curvaton' (Lyth and Wands 2001).
- This can lead to large non-Gaussianity requires particular initial conditions, very similar to those for slow-roll effects.
- For two quadratics

$$\left.rac{6}{5}f_{
m NL}
ight|_{
m peak}=rac{3\sqrt{3}}{16}rac{\eta^*_{\sigma\sigma}}{ heta*}$$

Geometry of the IEI scenario

*

Non-linear statistics

This and next few slide shamelessly stolen from J. Elliston

A. Naruko and M. Sasaki, Prog.Theor.Phys. 121, 193 (2009), 0807.0180.
Q.-G. Huang, JCAP 0906, 035 (2009), 0904.2649.
T. Matsuda, JCAP 1204, 020 (2012), 1204.0303.
D. Battefeld and T. Battefeld, JCAP 1307, 038 (2013), 1304.0461.

Inhomogeneous end to Hybrid

Thursday, 19 September 13

4) One field can modulate decay of other – MR scenario (e.g. Zaldarriaga 2003)

Radiation

4) One field can modulate decay of other - MR scenario (e.g. Zaldarriaga 2003)

Modulated reheating of Vanilla Inflation

Thursday, 19 September 13

Summary

Multi-field models are generic. e.g., D-brane models (Dias et al. 2012, McAllister et al. 2012). Calculating observables is now much harder (see Jonny's talk).

- Multi-field models can behave differently from single field models, but it can be very hard to tell them apart. Even with the much improved Planck constraints.
- Multi-field inflation can produce NG which is in tension with data, but for many scenarios this requires particular initial conditions – while constraints on other scenarios are quite strong.
- Previous work focused on what behaviour is allowed, mainly two field.

Future will be more driven by realistic models - more fields (Marsh et al. 2013).