Numerically calculating inflationary correlation functions

David Mulryne Queen Mary, University of London

e.g. arXiv:1302.3842, DJM arXiv:1008.3159, DJM, David Seery, Daniel Wesley on going work with David Seery, Mafalda Dias, Joe Elliston, Jonny Frazer, arXiv:1401.6078 with John Ellis and Nick Mavromatos

Things I'll say something about

What are inflationary correlation functions?

Approaches to calculating them

When are numerics required?

Our implementation (work in progress)

Some results

Basics

• We care about the Fourier space correlation functions: $\langle \zeta(k_1)\zeta(k_2)\rangle = (2\pi)^3 P(k_1)\delta^3(\mathbf{k_1} + \mathbf{k_2})$ $\langle \zeta(k_1)\zeta(k_2)\zeta(k_3)\rangle = (2\pi)^3 B(k_1, k_2, k_3)\delta^3(\mathbf{k_1} + \mathbf{k_2} + \mathbf{k_3})$

Where for inflation

 $P(k) \approx Ak^{-3}$

And for vanilla inflation

 $f_{\rm nl}(k_1, k_2, k_3) \sim \text{slow roll parameters}$

Cosmological perturbation theory (e.g. review of Malik and Wands 2008), provides evolution equations/Lagrangian of perturbations (curvature/ isocuvature or fields).

The Planck team – Ade et al. 2013

The Planck team – Ade et al. 2013

Evolution of perturbations

The equations of motion for fluctuations

$$x_{\alpha'} = \{\delta\phi_{a'}, \delta\dot{\phi}_{b'}\}$$

$$\frac{\mathrm{d}x_{\alpha'}}{\mathrm{dt}} = u_{\alpha'\beta'}x_{\beta'} + \frac{1}{2!}u_{\alpha'\beta'\gamma'}\left(x_{\beta'}x_{\gamma'} - \langle x_{\beta'}x_{\gamma'}\rangle\right) + \dots$$

Where for example

$$\frac{\mathrm{d}\delta\phi_a(k)}{\mathrm{d}t} = \delta\dot{\phi}_a(k)$$

 $\frac{\mathrm{d}\delta\dot{\phi}_a(k)}{\mathrm{d}t} = -3H\delta\dot{\phi}_a(k) - \frac{k^2}{a^2}\delta\phi_a(k) - M_{ab}^2\delta\phi_b(k) - V_{abc}^{\prime\prime\prime}[\delta\phi_b*\delta\phi_c](k) + \dots$

Usual approach

The fields must be solved as operators from some initial vacuum.

Traditional QFT 'In-In' approach is to start with linear field

 $\delta\phi_a(t,\mathbf{k}) = \Psi_{ac}(t,k)a_c(\mathbf{k}) + \Psi_{ac}^*(t,k)a_c^{\dagger}(-\mathbf{k})$

Solve for the coupling matrix (Salopek, Bond and Bardeen, 1989, Huston, Pyflation, 2012, Easther et al. 2013) to find two point,

$$\langle \hat{\delta \phi}_a \hat{\delta \phi}_b \rangle = \Psi_{ac} \Psi_{cb}^*$$

and use (Maldacena, 2003)

$$\langle \hat{x}_{\alpha'} \hat{x}_{\beta'} \hat{x}_{\gamma'} \rangle = -i \int_{t_0}^t \mathrm{d}t' \langle \left[\hat{x}_{\alpha'} \hat{x}_{\beta'} \hat{x}_{\gamma'}, \hat{\mathcal{H}}_{\mathrm{int}}(t') \right] \rangle$$

${f o}$ Example $\{\Psi_{ab}, \dot{\Psi}_{ab}\}$ for double quadratic

Some comments

Single field versus multiple field: initial conditions, evolution after horizon crossing, gauge issues, curved field space metric, reheating..... makes things harder, particularly for bispectrum

Analytical calculations are limited (particularly for multi-fields, δN)

Previous work for numerical calculation of bispectrum -- full calculation for single field (Chen, Easther, Lim, 2006, 2008, Horner and Contaldi, 2013), super-horizon using δN (e.g. Elliston, Mulryne, Seery, Tavakol, 2011, Leung, Tarrant, Byrnes, Copeland, 2012), using transport (Mulryne, Seery, Wesley, 2010, Dias, Frazer, Liddle 2012)

Solution Interesting questions about how In-In, transport, δN related (seery, Mulryne, Dias, Ribeiro, 2012, Mulryne 2013)

Transport derivation

We have developed an alternative, 'transport' approach, (e.g. Mulryne, Seery, Wesley, 2009, Mulryne 2013), which directly solves for correlation functions:

$$\Sigma_{\alpha'\beta'} = \langle x_{\alpha'}x_{\beta'}\rangle , \ \alpha_{\alpha'\beta'\gamma'} = \langle x_{\alpha'}x_{\beta'}x_{\gamma'}\rangle$$

Where

$$\Sigma_{\alpha'\beta'} = (2\pi)^3 \delta(\mathbf{k}_{\alpha} + \mathbf{k}_{\beta}) \Sigma_{\alpha\beta}(k_{\alpha})$$
$$\alpha_{\alpha'\beta'\gamma'} = (2\pi)^3 \delta(\mathbf{k}_{\alpha} + \mathbf{k}_{\beta} + \mathbf{k}_{\gamma}) \alpha_{\alpha\beta\gamma}(k_{\alpha}, k_{\beta}, k_{\gamma})$$

And using Ehrenfest's theorem, we find

$$\frac{\Sigma_{\alpha\beta}^{r}(k_{\alpha})}{\mathrm{d}t} = u_{\alpha\gamma}(k_{\alpha})\Sigma_{\gamma\beta}^{r}(k_{\alpha}) + u_{\beta\gamma}(k_{\alpha})\Sigma_{\gamma\alpha}^{r}(k_{\alpha})$$

$$\frac{\mathrm{d}\alpha_{\alpha\beta\gamma}(k_{\alpha},k_{\beta},k_{\gamma})}{\mathrm{d}t} = u_{\alpha\lambda}(k_{\alpha})\alpha_{\lambda\beta\gamma}(k_{\alpha},k_{\beta},k_{\gamma}) + u_{\alpha\lambda\mu}(k_{\alpha},k_{\beta},k_{\gamma})\Sigma_{\lambda\beta}^{r}(k_{\beta})\Sigma_{\mu\gamma}^{r}(k_{\gamma}) -\frac{1}{3}u_{\alpha\lambda\mu}(k_{\alpha},k_{\beta},k_{\gamma})\Sigma_{\lambda\beta}^{i}(k_{\beta})\Sigma_{\mu\gamma}^{i}(k_{\gamma}) + \mathrm{cyclic}$$

- Step 1. Derive the u coefficients for the model at hand (multi-field canonical/non-canonical, curved field space etc).
- Step 2. Calculate the initial conditions (Bunch-Davis) integral solutions can be used to fix these at arbitrary times (at or long before horizon crossing).
- Step 3. Solve the ODEs for the correlations of the field perturbations. If want the bi-spectra for example, one evolution for each triangle of k scales -- MPI, GPUs
- Step 4. Convert to any other quantity of interest (zeta correlations power/bi-spectra fnl.....)
- Step 5. Integrate bi-spectrum against template (local etc)
- We are developing user friendly code to release publicly

We are developing user friendly code to release publicly

- Step 1. Derive the u coefficients for the model at hand (multi-field canonical/non-canonical, curved field space etc).
- Step 2. Calculate the initial conditions (Bunch-Davis) integral solutions can be used to fix these at arbitrary times (at or long before horizon crossing).
- Step 3. Solve the ODEs for the correlations of the field perturbations. If want the bi-spectra for example, one evolution for each triangle of k scales -- MPI, GPUs
- Step 4. Convert to any other quantity of interest (zeta correlations power/bi-spectra fnl.....)
- Step 5. Integrate bi-spectrum against template (local etc)
- We are developing user friendly code to release publicly

Sexample for double quadratic

Tuesday, 18 February 14

Tuesday, 18 February 14

Tuesday, 18 February 14

Tuesday, 18 February 14

Does anything go?

(Frazer 2013, Easther, Frazer, Peiris, Price, 2013)

Does anything go?

(Frazer 2013, Easther, Frazer, Peiris, Price, 2013)

Does anything go?

(Frazer 2013, Easther, Frazer, Peiris, Price, 2013)

- Step 1. Derive the u coefficients for the model at hand (multi-field canonical/non-canonical, curved field space etc).
- Step 2. Calculate the initial conditions (Bunch-Davis) integral solutions can be used to fix these at arbitrary times (at or long before horizon crossing).
- Step 3. Solve the ODEs for the correlations of the field perturbations. If want the bi-spectra for example, one evolution for each triangle of k scales -- MPI, GPUs
- Step 4. Convert to any other quantity of interest (zeta correlations power/bi-spectra fnl.....)
- Step 5. Integrate bi-spectrum against template (local etc)
- We are developing user friendly code to release publicly