Numerically calculating inflationary correlation functions

David Mulryne
Queen Mary, University of London

e.g. arXiv:1302.3842, DJM
arXiv:1008.3159, DJM, David Seery, Daniel Wesley on going work with David Seery, Mafalda Dias, Joe Elliston, Jonny Frazer, arXiv:1401.6078 with John Ellis and Nick Mavromatos

Things I'll say something about

-What are inflationary correlation functions?

- Approaches to calculating them
- When are numerics required?
- Our implementation (work in progress)
- Some results

Basics

- We care about the Fourier space correlation functions:

$$
\begin{gathered}
\left\langle\zeta\left(k_{1}\right) \zeta\left(k_{2}\right)\right\rangle=(2 \pi)^{3} P\left(k_{1}\right) \delta^{3}\left(\mathbf{k}_{1}+\mathbf{k}_{\mathbf{2}}\right) \\
\left\langle\zeta\left(k_{1}\right) \zeta\left(k_{2}\right) \zeta\left(k_{3}\right)\right\rangle=(2 \pi)^{3} B\left(k_{1}, k_{2}, k_{3}\right) \delta^{3}\left(\mathbf{k}_{\mathbf{1}}+\mathbf{k}_{\mathbf{2}}+\mathbf{k}_{\mathbf{3}}\right)
\end{gathered}
$$

- Where for inflation

$$
P(k) \approx A k^{-3}
$$

- And for vanilla inflation

$$
f_{\mathrm{nl}}\left(k_{1}, k_{2}, k_{3}\right) \sim \text { slow roll parameters }
$$

- Cosmological perturbation theory (e., review of malik and Wands 2008), provides evolution equations/Lagrangian of perturbations (curvature) isocuvature or fields).

	Planck+WP
\square	Planck+WP+highL
Planck+WP+BAO	
$-{ }^{-}$	Natural Inflation
Power law inflation	
-	Low Scale SSB SUSY
-	R^{2} Inflation
-	$V \propto \phi^{2 / 3}$
-	$V \propto \phi$
-	$V \propto \phi^{2}$
-	$V \propto \phi^{3}$
-	$N_{*}=50$
-	$N_{*}=60$

The Planck team - Ade et al. 2013

The Planck team - Ade et al. 2013

Evolution of perturbations

- The equations of motion for fluctuations

$$
x_{\alpha^{\prime}}=\left\{\delta \phi_{a^{\prime}}, \delta \dot{\phi}_{b^{\prime}}\right\}
$$

- are of form

$$
\frac{\mathrm{d} x_{\alpha^{\prime}}}{\mathrm{dt}}=u_{\alpha^{\prime} \beta^{\prime}} x_{\beta^{\prime}}+\frac{1}{2!} u_{\alpha^{\prime} \beta^{\prime} \gamma^{\prime}}\left(x_{\beta^{\prime}} x_{\gamma^{\prime}}-\left\langle x_{\beta^{\prime}} x_{\gamma^{\prime}}\right\rangle\right)+\ldots
$$

- Where for example

$$
\frac{\mathrm{d} \delta \phi_{a}(k)}{d t}=\delta \dot{\phi}_{a}(k)
$$

$$
\frac{\mathrm{d} \delta \dot{\phi}_{a}(k)}{\mathrm{d} t}=-3 H \delta \dot{\phi}_{a}(k)-\frac{k^{2}}{a^{2}} \delta \phi_{a}(k)-M_{a b}^{2} \delta \phi_{b}(k)-V_{a b c}^{\prime \prime \prime}\left[\delta \phi_{b} * \delta \phi_{c}\right](k)+\ldots
$$

Usual approach

- The fields must be solved as operators from some initial vacuum.
- Traditional QFT 'In-In' approach is to start with linear field

$$
\delta \phi_{a}(t, \mathbf{k})=\Psi_{a c}(t, k) a_{c}(\mathbf{k})+\Psi_{a c}^{*}(t, k) a_{c}^{\dagger}(-\mathbf{k})
$$

- Solve for the coupling matrix (Salopek, Bond and Bardeen, 1989, Huston, Pyflation, 2012, Easther et al. 2013) to find two point,

$$
\left\langle\hat{\delta \phi} \phi_{a} \hat{\delta} \phi_{b}\right\rangle=\Psi_{a c} \Psi_{c b}^{*}
$$

- and use (Maldacena, 2003)

$$
\left\langle\hat{x}_{\alpha^{\prime}} \hat{x}_{\beta^{\prime}} \hat{x}_{\gamma^{\prime}}\right\rangle=-i \int_{t_{0}}^{t} \mathrm{~d} t^{\prime}\left\langle\left[\hat{x}_{\alpha^{\prime}} \hat{x}_{\beta^{\prime}} \hat{x}_{\gamma^{\prime}}, \hat{\mathcal{H}}_{\text {int }}\left(t^{\prime}\right)\right]\right\rangle
$$

- Example $\left\{\Psi_{a b}, \dot{\Psi}_{a b}\right\}$ for double quadratic

Some comments

- Single field versus multiple field: initial conditions, evolution after horizon crossing, gauge issues, curved field space metric, reheating..... makes things harder, particularly for bispectrum
- Analytical calculations are limited (particularly for multi-fields, δN)
- Previous work for numerical calculation of bispectrum -- full calculation for single field (Chen, Easther Lim, 2006, 2008, Homer and Contadil, 2013), superhorizon using δN (eg. Elliston, Mulryne, Seery, Tavakol, zol1, Leung, Tarrant, Byynes, Copeland, 2012), using transport (Mulryne, Seery, Wesley, 2010, Dias, Frazer, Liddle 2012)
- Interesting questions about how In-In, transport, δN related (seery, mulryne, Dias, Ribeiro, 2012, Mulryne 2013)

Transport derivation

- We have developed an alternative, 'transport' approach, (e.g. Malryne, seery, wesley, 2009, Mulryne 20133, which directly solves for correlation functions:

$$
\Sigma_{\alpha^{\prime} \beta^{\prime}}=\left\langle x_{\alpha^{\prime}} x_{\beta^{\prime}}\right\rangle, \alpha_{\alpha^{\prime} \beta^{\prime} \gamma^{\prime}}=\left\langle x_{\alpha^{\prime}} x_{\beta^{\prime}} x_{\gamma^{\prime}}\right\rangle
$$

- Where

$$
\begin{aligned}
\Sigma_{\alpha^{\prime} \beta^{\prime}} & =(2 \pi)^{3} \delta\left(\mathbf{k}_{\alpha}+\mathbf{k}_{\beta}\right) \Sigma_{\alpha \beta}\left(k_{\alpha}\right) \\
\alpha_{\alpha^{\prime} \beta^{\prime} \gamma^{\prime}} & =(2 \pi)^{3} \delta\left(\mathbf{k}_{\alpha}+\mathbf{k}_{\beta}+\mathbf{k}_{\gamma}\right) \alpha_{\alpha \beta \gamma}\left(k_{\alpha}, k_{\beta}, k_{\gamma}\right)
\end{aligned}
$$

- And using Ehrenfest's theorem, we find

$$
\begin{gathered}
\frac{\sum_{\alpha \beta}^{r}\left(k_{\alpha}\right)}{\mathrm{d} t}=u_{\alpha \gamma}\left(k_{\alpha}\right) \sum_{\gamma \beta}^{r}\left(k_{\alpha}\right)+u_{\beta \gamma}\left(k_{\alpha}\right) \sum_{\gamma \alpha}^{r}\left(k_{\alpha}\right) \\
\frac{\mathrm{d} \alpha_{\alpha \beta \gamma}\left(k_{\alpha}, k_{\beta}, k_{\gamma}\right)}{\mathrm{d} t}=u_{\alpha \lambda}\left(k_{\alpha}\right) \alpha_{\lambda \beta \gamma}\left(k_{\alpha}, k_{\beta}, k_{\gamma}\right)+u_{\alpha \lambda \mu}\left(k_{\alpha}, k_{\beta}, k_{\gamma}\right) \sum_{\lambda \beta}^{r}\left(k_{\beta}\right) \sum_{\mu \gamma}^{r}\left(k_{\gamma}\right) \\
-\frac{1}{3} u_{\alpha \lambda \mu}\left(k_{\alpha}, k_{\beta}, k_{\gamma}\right) \sum_{\lambda \beta}^{i}\left(k_{\beta}\right) \sum_{\mu \gamma}^{i}\left(k_{\gamma}\right)+\text { cyclic }
\end{gathered}
$$

Transport numerical algorithm

- Step 1. Derive the u coefficients for the model at hand (multi-field canonical/non-canonical, curved field space etc).
- Step 2. Calculate the initial conditions (Bunch-Davis) - integral solutions can be used to fix these at arbitrary times (at or long before horizon crossing).
- Step 3. Solve the ODEs for the correlations of the field perturbations. If want the bi-spectra for example, one evolution for each triangle of k scales -- MPI, GPUs
- Step 4. Convert to any other quantity of interest (zeta correlations -power/bi-spectra - fnl.....)
- Step 5. Integrate bi-spectrum against template (local etc)
- We are developing user friendly code to release publicly

Transport numerical algorithm

- Step 1. Derive the u coefficients for the model at hand (multi-field - Stenonical 2. solutions before ho
- Step 3 .
- Stepore 3 . perturbat each triar
- Step 4. C
power/bieach triar
- Step 4. C
power/bieach triar
- Step 4. C
power/bi-
 (at or long

f the field evolution for
- Step 5. Integrane dr-speatrant aganor remplane (lvearent)
- We are developing user friendly code to release publicly

Transport numerical algorithm

- Step 1. Derive the u coefficients for the model at hand (multi-field canonical/non-canonical, curved field space etc).
- Step 2. Calculate the initial conditions (Bunch-Davis) - integral solutions can be used to fix these at arbitrary times (at or long before horizon crossing).
- Step 3. Solve the ODEs for the correlations of the field perturbations. If want the bi-spectra for example, one evolution for each triangle of k scales -- MPI, GPUs
- Step 4. Convert to any other quantity of interest (zeta correlations -power/bi-spectra - fnl.....)
- Step 5. Integrate bi-spectrum against template (local etc)
- We are developing user friendly code to release publicly

Transport evolutions

- Example for double quadratic

Transport evolutions

- Example for double quadratic

Transport evolutions

- Example for double quadratic

Transport evolutions

- Example for double quadratic

Transport evolutions

- Example for double quadratic

Back to Wess-Zumino

Back to Wess-Zumino

Back to Wess-Zumino

Back to Wess-Zumino

Back to Wess-Zumino

Back to Wess-Zumino

Back to Wess-Zumino

Does anything go?

(Frazer 2013, Easther, Frazer, Peiris, Price, 2013)

Does anything go?

(Frazer 2013, Easther, Frazer, Peiris, Price, 2013)

Does anything go?

(Frazer 2013, Easther, Frazer, Peiris, Price, 2013)

Transport numerical algorithm

- Step 1. Derive the u coefficients for the model at hand (multi-field canonical/non-canonical, curved field space etc).
- Step 2. Calculate the initial conditions (Bunch-Davis) - integral solutions can be used to fix these at arbitrary times (at or long before horizon crossing).
- Step 3. Solve the ODEs for the correlations of the field perturbations. If want the bi-spectra for example, one evolution for each triangle of k scales -- MPI, GPUs
- Step 4. Convert to any other quantity of interest (zeta correlations -power/bi-spectra - fnl.....)
- Step 5. Integrate bi-spectrum against template (local etc)
- We are developing user friendly code to release publicly

