Summary of MSSL/UCL Cosmology

Jason McEwen, Tom Kitching & Mark Cropper

MSSL Cosmology

- Mark Cropper head of the Astrophysics Group
- Two (relatively) new cosmology lecturers: Tom Kitching, Jason McEwen
- Strong involvement in Euclid mission
- As part of new injection of people (faculty, postdocs & PhD students) we hope to enhance existing links with other London Cosmology groups and develop new collaborations

Astrophysics Group Members

- 9 HEFCE-funded staff:
 - Graziella Branduardi-Raymont, Mark Cropper, Ignacio Ferreras, Daisuke Kawata,
 Tom Kitching, Jason McEwen, Mat Page, Kinwah Wu, Silvia Zane
- 3 STFC-funded research postdocs:
 - Steffano Pasetto, Myrto Symeonidis, pending
- 2 EPSRC-funded research postdocs:
 - Start early 2015 (to be advertised soon)
- 5 UK Space Agency-funded "mission-orientated" science postdocs:
 - Alice Breeveld, Paul Kuin, Sami-Matias Niemi, George Seabroke, Vladimir Yershov
- 8 PhD students
 - Just started: Jennifer Chan, Denis Gonzales, Ellis Owen
 - Jason Hunt, Susan Hutton, Idunn Jacobsen, Alvina On, Megan Whewell
 - Just completed: David Barnes, Rob Grand, Jason Rawlings, Ziri Younsi

Astrophysics Group Members

Tom Kitching


Graziella Branduardi-Raymont

Mat Page

Mark Cropper

Kinwah Wu

Jason McEwen

Alice Breeveld

Ignacio **Ferreras**

Daisuke Kawata

George Seabroke

Vladimir Yershov

Megan Whewell

Jennifer Chan

Sami-Matias Niemi

Myrto Symeonidis

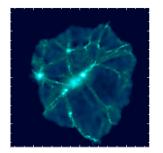
Main Science Fields

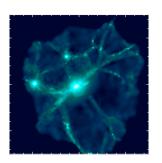
Compact Objects

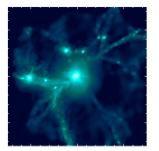
- Neutron stars
- Gamma-ray bursts
- Black holes (supermassive)

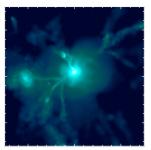
Galaxy Evolution

- Star formation history and black hole growth in UV, optical and Infrared
- Galaxy structure, galaxy modelling
- Radiation Transfer Theory
- Polarised transfer in highly gravitationally curved regimes (photons, neutrinos)

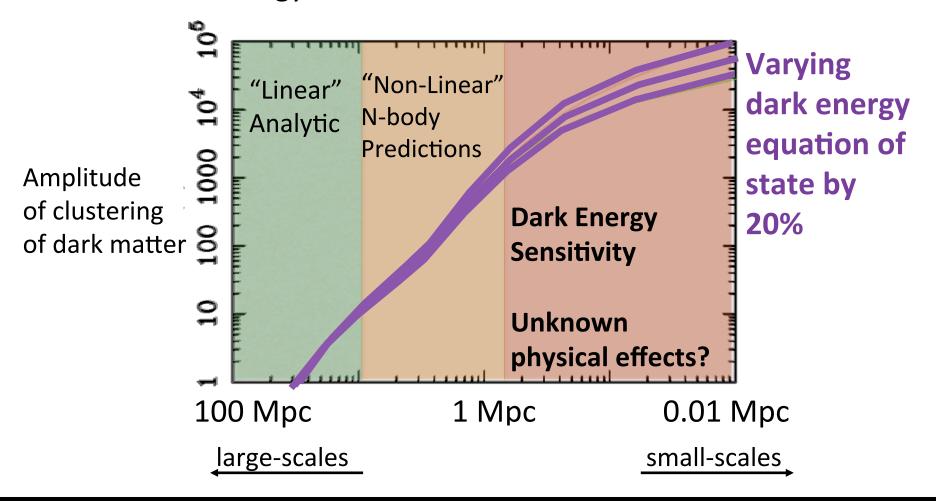

Cosmology


- Origin and evolution of cosmological magnetic fields
- Nature of Dark Energy and Dark Matter
- Early Universe Cosmology
- Radio Interferometry and the Epoch of Reionization



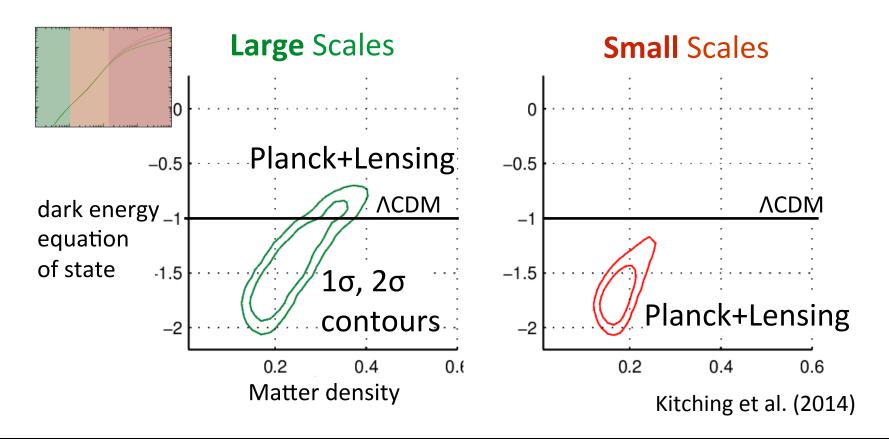

Cosmological Magneto-Genesis

- How large-scale magnetic fields originated and developed and what their roles were in cosmological structural formation are unresolved issues
- A new GCMHD+ code developed for cosmological magnetohydrodynamic simulations
- We investigate how large-scale magnetic fields imprint signatures in sky polarisation and develope a cosmological polarised radiative transfer code and a covariant algorithm to interface it with the GCMHD+ code


MHD simulations of the evolution of large-scale (30 Mpc³) magnetic fields from red shifts z = 0.9 to z = 0 (from left to right) using our GCMHD+ code

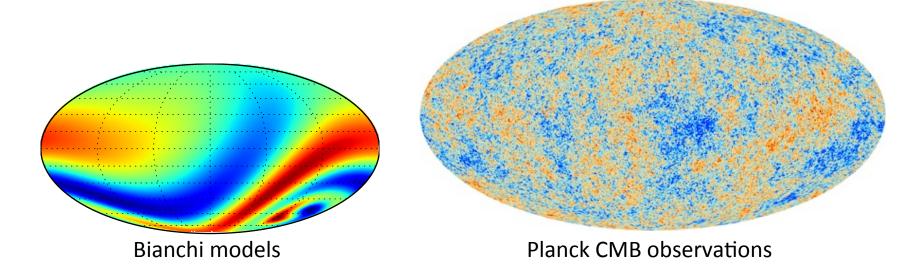
Our studies provide a solid framework for the analyses of future MWA and SKA data, give proper interpretations of observations and enable more meaningful comparisons with the predictions of cosmic magnetism models

Dark Energy


Most dark energy information comes from small scales:

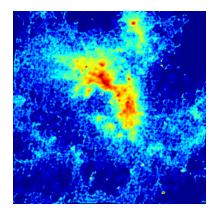
Dark Energy

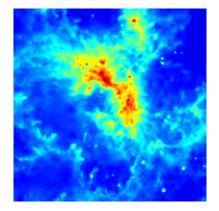
- Linear scales are consistent with LCDM
- Small scales are not consistent with LCDM: either LCDM is wrong or we don't understand small scales



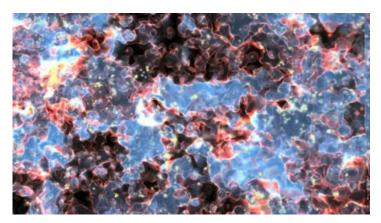
Early Universe Cosmology

- Cosmic microwave background (CMB)
 - Anisotropic cosmologies
 - Topological defects (cosmic strings and textures)
 - Dark energy
 - Inflation and non-Gaussianity



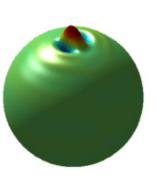

Radio Interferometry and EoR

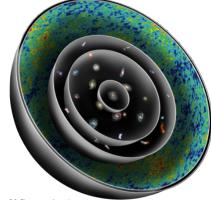
- Square Kilometre Array (SKA)
 - Software Data Processor (SDP) design study
 - Radio interferometric imaging with compressive sensing
 - Observing the Dark Ages and Epoch of Reionization (EoR)



State-of-Art

Compressive Sensing

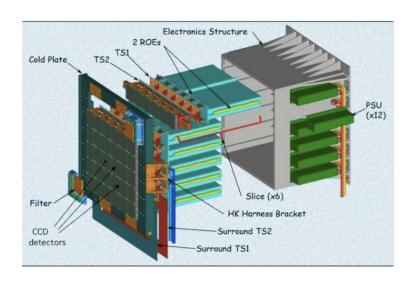


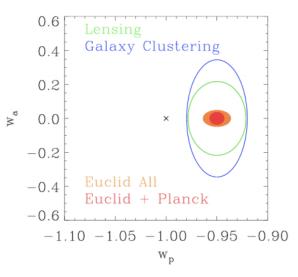

Observing the Epoch of Reionization

Astrostatistics & Astroinformatics

- Astrostatistics: exploit statistical approaches to extract scientific information from observational data
 - Bayesian statistics
 - Path integral methods
 - Machine learning
 - Fast algorithms and big-data
- Astroinformatics: exploit information theory to extract scientific information from observational data
 - Wavelets
 - Compressive sensing
 - Machine learning
 - Fast algorithms and big-data
- Cosmological observations live on spherical manifolds
- Connections between astrostatistics and astroinformatics

MSSL Astro Missions


Science is underpinned with strong links to space instrument teams

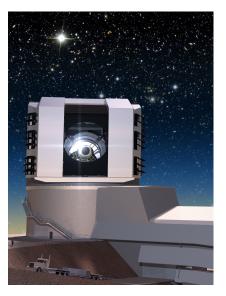

Operating missions: high energy XMM-Newton (OM and RGS) [1999] astrophysics Swift (UVOT) [2004] (compact objects) – Herschel (SPIRE) [2009] - Gaia (RVS) [2013] Awaiting launch: galaxy structure and evolution James Webb Space Telescope (NIRSpec) [2018] **Under Development** cosmology Euclid (VIS) [2020] planets PLATO [2024] Athena+ [2028] Proposed: LOFT — M4

Euclid

- Euclid Weak Lensing major focus of cosmology group long term from now to 2025-2030 (data and post-mission)
- MSSL leads both
 - the Instrument for weak lensing (VIS; Cropper) and Instrument Scientists (Niemi)
 - co-leads science for for weak lensing (Weak Lensing Science Working Group; Kitching)
 - UCL-MSSL lead of the 2nd-largest imager in space
 - Will be the most powerful facility available to study dark energy and dark matter

DE constraints from Euclid: 68% confidence contours in the (w_0, w_a) .

Involvement in External Experiments


SKA

CFHTLenS

KiDS

LSST

Where to find more

- MSSL Astrophysics: <u>www.ucl.ac.uk/mssl/astro</u>
- Cosmology @ MSSL: www.ucl.ac.uk/mssl/astro/research/cosmology
- MSSL Astro Blog: msslastro.wordpress.com
- Late Universe Blog: <u>lateuniverse.wordpress.com</u>
- Personal Websites: www.thomaskitching.net, www.jasonmcewen.org
- Twitter: @MSSLSpaceLab, @msslastro, @tom_kitching, @jasonmcewen

