Soft limits in multi-field inflation

David J. Mulryne

Queen Mary University of London
based on arXiv:1507.08629 and forthcoming work with Zac Kenton

Soft limits in multi-field inflation

David J. Mulryne

Queen Mary University of London
based on arXiv:1507.08629 and forthcoming work with Zac Kenton

Intro to soft limits

- Observations constrain correlations
- Soft limits occur when we consider a correlation with a large hierarchy of scales
- Often simple to calculate theoretically, and can lead to beautiful relations between correlations
- Important for comparison with observation, as range of scales probed increases, and for specific observations (halo bias)

Intro to soft limits

- Simplest example (Maldacena ' ${ }^{\circ}$; Creminelli; Zaldarriaga ${ }^{\circ} 04$; Cheung etal. 08)
- Power spectrum $\left\langle\zeta_{\vec{k}} \zeta_{\overrightarrow{k^{\prime}}}\right\rangle=(2 \pi)^{3} \delta\left(\vec{k}+\overrightarrow{k^{\prime}}\right) P_{\zeta}(k)$
- Bispectrum $\left\langle\zeta_{\overrightarrow{k_{1}}} \zeta_{\overrightarrow{k_{2}}} \zeta_{\overrightarrow{k_{3}}}\right\rangle=(2 \pi)^{3} \delta\left(\overrightarrow{k_{1}}+\overrightarrow{k_{2}}+\overrightarrow{k_{1}}\right) B_{\zeta}\left(k_{1}, k_{2}, k_{3}\right)$

Intro to soft limits

- Simplest example (Maldacena '03; Creminelli, Zaldarriaga ' 04 ; Cheung et al. '08)
- Power spectrum $\left\langle\zeta_{\vec{k}} \zeta_{\overrightarrow{k^{\prime}}}\right\rangle=(2 \pi)^{3} \delta\left(\vec{k}+\overrightarrow{k^{\prime}}\right) P_{\zeta}(k)$
- Bispectrum $\left\langle\zeta_{\overrightarrow{k_{1}}} \zeta_{\overrightarrow{k_{2}}} \zeta_{\overrightarrow{k_{3}}}\right\rangle=(2 \pi)^{3} \delta\left(\overrightarrow{k_{1}}+\overrightarrow{k_{2}}+\overrightarrow{k_{1}}\right) B_{\zeta}\left(k_{1}, k_{2}, k_{3}\right)$

$$
\begin{aligned}
\lim _{k_{1}<k_{3}} B_{\zeta}\left(k_{1}, k_{2}, k_{3}\right) & =-\frac{d \log \left(k_{3}^{3} P_{\zeta}\left(k_{3}\right)\right)}{d \log k_{3}} P_{\zeta}\left(k_{1}\right) P_{\zeta}\left(k_{3}\right) \\
& =-\left(n_{s}-1\right) P_{\zeta}\left(k_{1}\right) P_{\zeta}\left(k_{3}\right)
\end{aligned}
$$

Intro to soft limits

- Another example (e.g. Suyama and Yamaguchi '08; Smith et al. '11; Aassassi et al. '12; Yamaguchi ' ${ }^{\prime}$ 2)
- Trispectrum

$$
\left\langle\zeta_{\vec{k}_{1}} \zeta_{\vec{k}_{2}} \zeta_{\vec{k}_{3}} \zeta_{\vec{k}_{4}}\right\rangle=(2 \pi)^{3} \delta\left(\vec{k}_{1}+\vec{k}_{2}+\vec{k}_{3}+\vec{k}_{4}\right) T_{\zeta}\left(k_{1}, k_{2}, k_{3}, k_{4}\right)
$$

Intro to soft limits

- Another example (e.g. Suyama and Yamaguchi ' 08 ; Smith et al. '11; Aassassi et al. '12; Yamaguchi ' 12)
- Trispectrum $\left\langle\zeta_{\vec{k}_{1}} \zeta_{\vec{k}_{2}} \zeta_{\vec{k}_{3}} \zeta_{\vec{k}_{4}}\right\rangle=(2 \pi)^{3} \delta\left(\vec{k}_{1}+\vec{k}_{2}+\vec{k}_{3}+\vec{k}_{4}\right) T_{\zeta}\left(k_{1}, k_{2}, k_{3}, k_{4}\right)$

$$
\tilde{f}_{\mathrm{nl}} \equiv \lim _{k_{1} \rightarrow 0} \frac{B_{\zeta}\left(k_{1}, k_{2}, k_{3}\right)}{P_{\zeta}\left(k_{1}\right) P_{\zeta}\left(k_{2}\right)}, \quad \tilde{\tau}_{\mathrm{nl}} \equiv \lim _{\left|\vec{k}_{1}+\vec{k}_{2}\right| \rightarrow 0} \frac{T_{\zeta}\left(k_{1}, k_{2}, k_{3}, k_{2}\right)}{P_{\zeta}\left(k_{1}\right) P_{\zeta}\left(k_{3}\right) P_{\zeta}\left(\left|\vec{k}_{1}+\vec{k}_{2}\right|\right)}
$$

$$
\tilde{\tau}_{\mathrm{nl}} \geq\left(\frac{6}{5} \tilde{f}_{\mathrm{nl}}\right)^{2}
$$

Intro to soft limits

- Another example (e.g. Suyama and Yamaguchi ' 08 ; Smith et al. '11; Aassassi et al. '12; Yamaguchi ' 12)
- Trispectrum $\left\langle\zeta_{\vec{k}_{1}} \zeta_{\vec{k}_{2}} \zeta_{\vec{k}_{3}} \zeta_{\vec{k}_{4}}\right\rangle=(2 \pi)^{3} \delta\left(\vec{k}_{1}+\vec{k}_{2}+\vec{k}_{3}+\vec{k}_{4}\right) T_{\zeta}\left(k_{1}, k_{2}, k_{3}, k_{4}\right)$

$$
\tilde{f}_{\mathrm{nl}} \equiv \lim _{k_{1} \rightarrow 0} \frac{B_{\zeta}\left(k_{1}, k_{2}, k_{3}\right)}{P_{\zeta}\left(k_{1}\right) P_{\zeta}\left(k_{2}\right)}, \quad \tilde{\tau}_{\mathrm{nl}} \equiv \lim _{\left|\vec{k}_{1}+\vec{k}_{2}\right| \rightarrow 0} \frac{T_{\zeta}\left(k_{1}, k_{2}, k_{3}, k_{2}\right)}{P_{\zeta}\left(k_{1}\right) P_{\zeta}\left(k_{3}\right) P_{\zeta}\left(\left|\vec{k}_{1}+\vec{k}_{2}\right|\right)}
$$

$$
\tilde{\tau}_{\mathrm{nl}} \geq\left(\frac{6}{5} \tilde{f}_{\mathrm{nl}}\right)^{2}
$$

- Extensions to higher point functions and multiple soft limits, other fields (e.g.

Calculating observables with multiple fields

- Want to track correlations of the fluctuations, $\delta \phi$ etc, ultimately want curvature perturbation, ζ, power-spectrum, bispectrum, trispectrum etc.
- Tools required: In-In (e.g. Maldacena 2003) and δN formalism (e.g. Lyth and Rodriguez 2005)

Calculating observables with multiple fields

- Want to track correlations of the fluctuations, $\delta \phi$ etc, ultimately want curvature perturbation, ζ, power-spectrum, bispectrum, trispectrum etc.
- Tools required: In-In (e.g. Maldacena 2003) and δN formalism (e.g. Lyth and Rodriguez 2005)

Uniform-Density Slicing

Calculating observables with multiple fields

- In-In calculations can give us correlations at horizon crossing for $\mathrm{k}_{1} \sim \mathrm{k}_{2} \sim \mathrm{k}_{3}$

$$
\begin{aligned}
\left\langle\delta \phi_{i, k_{1}}^{(T)} \delta \phi_{j, k_{2}}^{(T)}\right\rangle & =(2 \pi)^{3} \delta\left(\overrightarrow{k_{1}}+\overrightarrow{k_{2}}\right) \Sigma_{i j}^{(T)}\left(k_{1}\right) \\
\left\langle\delta \phi_{i, k_{1}}^{(T)} \delta \phi_{j, k_{2}}^{(T)} \delta \phi_{k, k_{3}}^{(T)}\right\rangle & =(2 \pi)^{3} \delta\left(\overrightarrow{k_{1}}+\overrightarrow{k_{2}}+\overrightarrow{k_{3}}\right) \alpha_{i j k}^{(T)}\left(k_{1}, k_{2}, k_{3}\right)
\end{aligned}
$$

Calculating observables with multiple fields

- In-In calculations can give us correlations at horizon crossing for $\mathrm{k}_{1} \sim \mathrm{k}_{2} \sim \mathrm{k}_{3}$

$$
\begin{aligned}
\left\langle\delta \phi_{i, \overrightarrow{k_{1}}}^{(T)} \delta \phi_{j, \overrightarrow{k_{2}}}^{(T)}\right\rangle & =(2 \pi)^{3} \delta\left(\overrightarrow{k_{1}}+\overrightarrow{k_{2}}\right) \Sigma_{i j}^{(T)}\left(k_{1}\right) \\
\left\langle\delta \phi_{i, k_{1}}^{(T)} \delta \phi_{j, k_{2}}^{(T)} \delta \phi_{k, \vec{k}_{3}}^{(T)}\right\rangle & =(2 \pi)^{3} \delta\left(\overrightarrow{k_{1}}+\overrightarrow{k_{2}}+\overrightarrow{k_{3}}\right) \alpha_{i j k}^{(T)}\left(k_{1}, k_{2}, k_{3}\right)
\end{aligned}
$$

Exit Times: Equilateral

Calculating observables with multiple fields

- In-In calculations can give us correlations at horizon crossing for $\mathrm{k}_{1} \sim \mathrm{k}_{2} \sim \mathrm{k}_{3}$

$$
\begin{aligned}
\left\langle\delta \phi_{i, k_{1}}^{(T)} \delta \phi_{j, k_{2}}^{(T)}\right\rangle & =(2 \pi)^{3} \delta\left(\overrightarrow{k_{1}}+\overrightarrow{k_{2}}\right) \Sigma_{i j}^{(T)}\left(k_{1}\right) \\
\left\langle\delta \phi_{i, \overrightarrow{k_{1}}}^{(T)} \delta \phi_{j, \overrightarrow{k_{2}}}^{(T)} \delta \phi_{k, \overrightarrow{k_{3}}}^{(T)}\right\rangle & =(2 \pi)^{3} \delta\left(\overrightarrow{k_{1}}+\overrightarrow{k_{2}}+\overrightarrow{k_{3}}\right) \alpha_{i j k}^{(T)}\left(k_{1}, k_{2}, k_{3}\right)
\end{aligned}
$$

Exit Times: Equilateral

$$
\begin{aligned}
B_{\zeta}\left(k_{1}, k_{2}, k_{3}\right)= & N_{i}^{(T)} N_{j}^{(T)} N_{k}^{(T)} \alpha_{i j k}^{(T)}\left(k_{1}, k_{2}, k_{3}\right) \\
& +N_{i}^{(T)} N_{j k}^{(T)} N_{l}^{(T)}\left[\Sigma_{i j}^{(T)}\left(k_{1}\right) \Sigma_{k l}^{(T)}\left(k_{2}\right)+2 \text { perms }\right]
\end{aligned}
$$

Calculating observables with multiple fields

- In-In calculations can give us correlations at horizon crossing for $\mathrm{k}_{1} \sim \mathrm{k}_{2} \sim \mathrm{k}_{3}$

$$
\begin{aligned}
\left\langle\delta \phi_{i, k_{1}}^{(T)} \delta \phi_{j, \overrightarrow{k_{2}}}^{(T)}\right\rangle & =(2 \pi)^{3} \delta\left(\overrightarrow{k_{1}}+\overrightarrow{k_{2}}\right) \Sigma_{i j}^{(T)}\left(k_{1}\right) \\
\left\langle\delta \phi_{i, \overrightarrow{k_{1}}}^{(T)} \delta \phi_{j, k_{2}}^{(T)} \delta \phi_{k, \overrightarrow{k_{3}}}^{(T)}\right\rangle & =(2 \pi)^{3} \delta\left(\overrightarrow{k_{1}}+\overrightarrow{k_{2}}+\overrightarrow{k_{3}}\right) \alpha_{i j k}^{(T)}\left(k_{1}, k_{2}, k_{3}\right)
\end{aligned}
$$

Exit Times: Equilateral

$$
\begin{aligned}
& B_{\zeta}\left(k_{1}, k_{2}, k_{3}\right)= N_{i}^{(T)} N_{j}^{(T)} N_{k}^{(T)} \alpha_{i j k}^{(T)}\left(k_{1}, k_{2}, k_{3}\right) \\
&+N_{i}^{(T)} N_{j k}^{(T)} N_{l}^{(T)}\left[\Sigma_{i j}^{(T)}\left(k_{1}\right) \Sigma_{k l}^{(T)}\left(k_{2}\right)+2 \text { perms }\right] \\
& \Sigma_{i j}^{(3)}\left(k_{1}\right) \approx \delta_{i j} \frac{H^{2}}{2 k_{1}^{3}}, \quad \alpha_{i j k}^{(3)} \approx 0
\end{aligned}
$$

Calculating observables with multiple fields

- In-In calculations can give us correlations at horizon crossing for $\mathrm{k}_{1} \sim \mathrm{k}_{2} \sim \mathrm{k}_{3}$

$$
\begin{aligned}
\left\langle\delta \phi_{i, k_{1}}^{(T)} \delta \phi_{j, k_{2}}^{(T)}\right\rangle & =(2 \pi)^{3} \delta\left(\overrightarrow{k_{1}}+\overrightarrow{k_{2}}\right) \Sigma_{i j}^{(T)}\left(k_{1}\right) \\
\left\langle\delta \phi_{i, k_{1}}^{(T)} \delta \phi_{j, \overrightarrow{k_{2}}}^{(T)} \delta \phi_{k, k_{3}}^{(T)}\right\rangle & =(2 \pi)^{3} \delta\left(\overrightarrow{k_{1}}+\overrightarrow{k_{2}}+\overrightarrow{k_{3}}\right) \alpha_{i j k}^{(T)}\left(k_{1}, k_{2}, k_{3}\right)
\end{aligned}
$$

Exit Times: Equilateral

$$
\begin{aligned}
& B_{\zeta}\left(k_{1}, k_{2}, k_{3}\right)= N_{i}^{(T)} N_{j}^{(T)} N_{k}^{(T)} \alpha_{i j k}^{(T)}\left(k_{1}, k_{2}, k_{3}\right) \\
&+N_{i}^{(T)} N_{j k}^{(T)} N_{l}^{(T)}\left[\Sigma_{i j}^{(T)}\left(k_{1}\right) \Sigma_{k l}^{(T)}\left(k_{2}\right)+2 \text { perms }\right] \\
& \Sigma_{i j}^{(3)}\left(k_{1}\right) \approx \delta_{i j} \frac{H^{2}}{2 k_{1}^{3}}, \quad \alpha_{i j k}^{(3)} \approx 0 \\
& \lim _{k_{1} \approx k_{2} \approx k_{3}} f_{N L}=\frac{5 N_{i}^{(3)} N_{i j}^{(3)} N_{j}^{(3)}}{6 N_{q}^{(3)} N_{q}^{(3)} N_{p}^{(3)} N_{p}^{(3)}}
\end{aligned}
$$

Calculating soft observables with multiple fields

- Analytic calculations difficult for correlations at times after horizon crossing (c.t. results of Byrnes et al. '09; Dias et al. '12)

$$
\begin{aligned}
\lim _{k_{1}<k_{3}, k_{2}} B_{\zeta}\left(k_{1}, k_{2}, k_{3}\right) \approx & N_{i}^{(3)} N_{j}^{(3)} N_{k}^{(3)} \alpha_{i j k}^{(3)}\left(k_{1}, k_{2}, k_{3}\right) \\
& +2 N_{i}^{(3)} N_{j k}^{(3)} N_{l}^{(3)} \Sigma_{i j}^{(3)}\left(k_{1}\right) \Sigma_{k l}^{(3)}\left(k_{3}\right)
\end{aligned}
$$

Calculating soft observables with multiple fields

- Analytic calculations difficult for correlations at times after horizon crossing (c.t. results of Byrnes et al. '09; Dias et al. '12)

$$
\begin{aligned}
\lim _{k_{1}<k_{3}, k_{2}} B_{\zeta}\left(k_{1}, k_{2}, k_{3}\right) \approx & N_{i}^{(3)} N_{j}^{(3)} N_{k}^{(3)} \alpha_{i j k}^{(3)}\left(k_{1}, k_{2}, k_{3}\right) \\
& +2 N_{i}^{(3)} N_{j k}^{(3)} N_{l}^{(3)} \Sigma_{i j}^{(3)}\left(k_{1}\right) \Sigma_{k l}^{(3)}\left(k_{3}\right)
\end{aligned}
$$

Calculating soft observables with multiple fields

- Analytic calculations difficult for correlations at times after horizon crossing (c.t. results of Byrnes et al. '09; Dias et al. '12)

$$
\begin{aligned}
\lim _{k_{1}<k_{3}, k_{2}} B_{\zeta}\left(k_{1}, k_{2}, k_{3}\right) \approx & N_{i}^{(3)} N_{j}^{(3)} N_{k}^{(3)} \alpha_{i j k}^{(3)}\left(k_{1}, k_{2}, k_{3}\right) \\
& +2 N_{i}^{(3)} N_{j k}^{(3)} N_{l}^{(3)} \Sigma_{i j}^{(3)}\left(k_{1}\right) \Sigma_{k l}^{(3)}\left(k_{3}\right)
\end{aligned}
$$

Calculating soft observables with multiple fields

- Analytic calculations difficult for correlations at times after horizon crossing (c.t. results of Byrnes et al. '09; Dias et al. '12)

$$
\begin{aligned}
\lim _{k_{1} \ll k_{3}, k_{2}} B_{\zeta}\left(k_{1}, k_{2}, k_{3}\right) \approx & N_{i}^{(3)} N_{j}^{(3)} N_{k}^{(3)} \alpha_{i j k}^{(3)}\left(k_{1}, k_{2}, k_{3}\right) \\
& +2 N_{i}^{(3)} N_{j k}^{(3)} N_{l}^{(3)} \Sigma_{i j}^{(3)}\left(k_{1}\right) \Sigma_{k l}^{(3)}\left(k_{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
\delta \phi_{i}^{(3)}(\mathbf{x}) & =\Gamma_{i j} \delta \phi_{j}^{(1)}(\mathbf{x})+\ldots \\
\Gamma_{i j} & \equiv \frac{\partial \phi_{i}^{(3)}}{\partial \phi_{j}^{(1)}}
\end{aligned}
$$

Calculating soft observables with multiple fields

- Analytic calculations difficult for correlations at times after horizon crossing (c.t. results of Byrnes et al. '09; Dias et al. '12)

$$
\begin{aligned}
\lim _{k_{1} \ll k_{3}, k_{2}} B_{\zeta}\left(k_{1}, k_{2}, k_{3}\right) \approx & N_{i}^{(3)} N_{j}^{(3)} N_{k}^{(3)} \alpha_{i j k}^{(3)}\left(k_{1}, k_{2}, k_{3}\right) \\
& +2 N_{i}^{(3)} N_{j k}^{(3)} N_{l}^{(3)} \Sigma_{i j}^{(3)}\left(k_{1}\right) \Sigma_{k l}^{(3)}\left(k_{3}\right)
\end{aligned}
$$

$$
\begin{gathered}
\delta \phi_{i}^{(3)}(\mathbf{x})=\Gamma_{i j} \delta \phi_{j}^{(1)}(\mathbf{x})+\ldots \\
\Gamma_{i j} \equiv \frac{\partial \phi_{i}^{(3)}}{\partial \phi_{j}^{(1)}} \\
\Sigma_{i j}^{(3)}\left(k_{1}\right) \approx \Gamma_{i l} \Gamma_{j l} \frac{H^{2}}{2 k_{1}^{3}}, \quad \alpha_{i j k}^{(3)} \approx ?
\end{gathered}
$$

Calculating soft observables with multiple fields

- Analytic calculations difficult for correlations at times after horizon crossing (c.t. results of Byrnes et al. '09; Dias et al. '12)

$$
\begin{aligned}
\lim _{k_{1} \ll k_{3}, k_{2}} B_{\zeta}\left(k_{1}, k_{2}, k_{3}\right) \approx & N_{i}^{(3)} N_{j}^{(3)} N_{k}^{(3)} \alpha_{i j k}^{(3)}\left(k_{1}, k_{2}, k_{3}\right) \\
& +2 N_{i}^{(3)} N_{j k}^{(3)} N_{l}^{(3)} \Sigma_{i j}^{(3)}\left(k_{1}\right) \Sigma_{k l}^{(3)}\left(k_{3}\right)
\end{aligned}
$$

$$
\begin{gathered}
\delta \phi_{i}^{(3)}(\mathbf{x})=\Gamma_{i j} \delta \phi_{j}^{(1)}(\mathbf{x})+\ldots \\
\Gamma_{i j} \equiv \frac{\partial \phi_{i}^{(3)}}{\partial \phi_{j}^{(1)}} \\
\Sigma_{i j}^{(3)}\left(k_{1}\right) \approx \Gamma_{i l} \Gamma_{j l} \frac{H^{2}}{2 k_{1}^{3}}, \quad \alpha_{i j k}^{(3)} \approx ? \\
\lim _{k_{1}<k_{2} \approx k_{3}} f_{N L}=\frac{5 N_{i}^{(3)} N_{i j}^{(3)} \Gamma_{j k} N_{k}^{(1)}}{6 N_{q}^{(1)} N_{q}^{(1)} N_{p}^{(3)} N_{p}^{(3)}}
\end{gathered}
$$

Calculating soft observables with multiple fields

- Analytic calculations difficult for correlations at times after horizon crossing (c.t. results of Byrnes et al. '09; Dias et al. '12)

$$
\begin{aligned}
\lim _{k_{1} \ll k_{3}, k_{2}} B_{\zeta}\left(k_{1}, k_{2}, k_{3}\right) \approx & N_{i}^{(3)} N_{j}^{(3)} N_{k}^{(3)} \alpha_{i j k}^{(3)}\left(k_{1}, k_{2}, k_{3}\right) \\
& +2 N_{i}^{(3)} N_{j k}^{(3)} N_{l}^{(3)} \Sigma_{i j}^{(3)}\left(k_{1}\right) \Sigma_{k l}^{(3)}\left(k_{3}\right)
\end{aligned}
$$

$$
\begin{gathered}
\delta \phi_{i}^{(3)}(\mathbf{x})=\Gamma_{i j} \delta \phi_{j}^{(1)}(\mathbf{x})+\ldots \\
\Gamma_{i j} \equiv \frac{\partial \phi_{i}^{(3)}}{\partial \phi_{j}^{(1)}} \\
\Sigma_{i j}^{(3)}\left(k_{1}\right) \approx \Gamma_{i l} \Gamma_{j l} \frac{H^{2}}{2 k_{1}^{3}}, \quad \alpha_{i j k}^{(3)} \approx ? \\
\lim _{k_{1} \approx k_{2} \approx k_{3}} f_{N L}=\frac{5 N_{i}^{(3)} N_{i j}^{(3)} N_{j}^{(3)}}{6 N_{q}^{(3)} N_{q}^{(3)} N_{p}^{(3)} N_{p}^{(3)}}
\end{gathered}
$$

Calculating soft observables with multiple fields

- Analytic calculations difficult for correlations at times after horizon crossing (c.t. results of Byrnes et al. '09; Dias et al. '12)

$$
\begin{aligned}
\lim _{k_{1} \ll k_{3}, k_{2}} B_{\zeta}\left(k_{1}, k_{2}, k_{3}\right) \approx & N_{i}^{(3)} N_{j}^{(3)} N_{k}^{(3)} \alpha_{i j k}^{(3)}\left(k_{1}, k_{2}, k_{3}\right) \\
& +2 N_{i}^{(3)} N_{j k}^{(3)} N_{l}^{(3)} \Sigma_{i j}^{(3)}\left(k_{1}\right) \Sigma_{k l}^{(3)}\left(k_{3}\right)
\end{aligned}
$$

$$
\begin{gathered}
\delta \phi_{i}^{(3)}(\mathbf{x})=\Gamma_{i j} \delta \phi_{j}^{(1)}(\mathbf{x})+\ldots \\
\Gamma_{i j} \equiv \frac{\partial \phi_{i}^{(3)}}{\partial \phi_{j}^{(1)}} \\
\Sigma_{i j}^{(3)}\left(k_{1}\right) \approx \Gamma_{i l} \Gamma_{j l} \frac{H^{2}}{2 k_{1}^{3}}, \quad \alpha_{i j k}^{(3)} \approx ? \\
\lim _{k_{1}<k_{2} \approx k_{3}} f_{N L}=\frac{5 N_{i}^{(3)} N_{i j}^{(3)} \Gamma_{j k} N_{k}^{(1)}}{6 N_{q}^{(1)} N_{q}^{(1)} N_{p}^{(3)} N_{p}^{(3)}}
\end{gathered}
$$

Calculating soft observables with multiple fields

- Final step is to calculate squeezed $\alpha_{i j k}^{(3)}\left(k_{1}, k_{2}, k_{3}\right)$

Calculating soft observables with multiple fields

- Final step is to calculate squeezed $\alpha_{i j k}^{(3)}\left(k_{1}, k_{2}, k_{3}\right)$

Calculating soft observables with multiple fields

- Final step is to calculate squeezed $\alpha_{i j k}^{(3)}\left(k_{1}, k_{2}, k_{3}\right)$

$$
\begin{gathered}
\lim _{k_{1} \ll k_{3}, k_{2}} \alpha_{i j k}^{(3)}\left(k_{1}, k_{2}, k_{3}\right) \approx \Sigma_{i m}^{(3)}\left(k_{1}\right) \frac{\partial}{\partial \phi_{m}^{(3)}} \Sigma_{j k}^{(3)}\left(k_{3}\right) \\
\text { (Kenton and DJM, '15) }
\end{gathered}
$$

Calculating soft observables with multiple fields

- Final step is to calculate squeezed $\alpha_{i j k}^{(3)}\left(k_{1}, k_{2}, k_{3}\right)$

$$
\lim _{k_{1} \ll k_{3}, k_{2}} \alpha_{i j k}^{(3)}\left(k_{1}, k_{2}, k_{3}\right) \approx \Sigma_{i m}^{(3)}\left(k_{1}\right) \frac{\partial}{\partial \phi_{m}^{(3)}} \Sigma_{j k}^{(3)}\left(k_{3}\right)
$$

- Note similarity to Maldacena relation for curvature perturbation (c.f. previus results: Allen et al. '05; Li and Wang '08)

Example: interacting curvaton

- Bispectrum in squeezed limit (relevant for e.g. Halo Bias)

$$
f_{N L}\left(k_{1}, k_{2}, k_{3}\right) \sim \frac{B_{\zeta}\left(k_{1}, k_{2}, k_{3}\right)}{P_{\zeta}\left(k_{1}\right) P_{\zeta}\left(k_{3}\right)}
$$

Example: interacting curvaton

- Spectral index of the Halo Bias

$$
n_{\delta b} \sim \frac{d \log f_{\mathrm{NL}}\left(k_{1}, k_{2}, k_{3}\right)}{d \log k_{1}}
$$

Current work extending to trispectum

- Many more soft limits

Current work extending to trispectum

- Many more soft limits

Current work extending to trispectum

- Many more soft limits

Current work extending to trispectum

- Many more soft limits

Current work extending to trispectum

- Many more soft limits

Current work extending to trispectum

- Many more soft limits

- Important to be able to calculate to compare with observation, and provides new insight to Suyama-Yamaguchi relation

Conclusion

- Soft limits lead to interesting consistency relations
- We also simply need to be able to calculate correlations away from near equilateral configurations (to compare models with observations)
- We have presented an explicit discussion for the multiple field bispectrum in arXiv:1507.08629
- In ongoing work we are extending to the trispectrum

